
Optimizing Implementations
of Lightweight Building Blocks

Jérémy Jean1, Thomas Peyrin2, Siang Meng Sim2 and Jade Tourteaux1,3

1 ANSSI Crypto Lab, Paris, France
Jeremy.Jean@ssi.gouv.fr

2 Nanyang Technological University, Singapore
Thomas.Peyrin@ntu.edu.sg, ssim011@e.ntu.edu.sg

3 Paris Diderot University, Paris, France
Jade.Tourteaux@gmail.com

Abstract. We study the synthesis of small functions used as building blocks in
lightweight cryptographic designs in terms of hardware implementations. This phase
most notably appears during the ASIC implementation of cryptographic primitives.
The quality of this step directly affects the output circuit, and while general tools
exist to carry out this task, most of them belong to proprietary software suites and
apply heuristics to any size of functions. In this work, we focus on small functions
(4- and 8-bit mappings) and look for their optimal implementations on a specific
weighted instructions set which allows fine tuning of the technology.
We propose a tool named LIGHTER, based on two related algorithms, that produces
optimized implementations of small functions. To demonstrate the validity and
usefulness of our tool, we applied it to two practical cases: first, linear permutations
that define diffusion in most of SPN ciphers; second, non-linear 4-bit permutations
that are used in many lightweight block ciphers. For linear permutations, we exhibit
several new MDS diffusion matrices lighter than the state-of-the-art, and we also
decrease the implementation cost of several already known MDS matrices. As for
non-linear permutations, LIGHTER outperforms the area-optimized synthesis of the
state-of-the-art academic tool ABC. Smaller circuits can also be reached when ABC
and LIGHTER are used jointly.
Keywords: LIGHTER · Implementation · ASIC · Lightweight Block Ciphers · Boolean
function · Meet-in-the-Middle · Sbox · MDS Matrix

1 Introduction
Pervasive computing is becoming increasingly important in many applications of our daily
life. Lightweight devices such as RFID tags and wireless sensor nodes might manipulate sen-
sitive data and thus usually require some security. Yet, classical cryptographic algorithms
may not be very suitable for this type of applications, especially for very constrained
environments. As a consequence, lightweight cryptography has become an extremely
active research topic in the recent years, with several new lightweight symmetric-key
primitives being proposed, e.g., [8, 9, 13, 41, 44]. In this context, there have been many
advances in finding the best possible and in particular the most lightweight building bricks
to design a symmetric-key primitive. In particular, diffusion matrices [10, 29, 31, 32, 42]
and Sboxes [18,19, 34,38, 46] were thoroughly scrutinized as they are considered classical
components of modern SPN ciphers.
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What criterion to optimize for lightweight applications might significantly vary depend-
ing on the exact application (area, throughput, energy, power), but compact implemen-
tations, i.e. minimizing the area required by the hardware implementation, is generally
considered of major importance as it represents a direct constraint in practice (even though
the technology evolved since then, it was for example expected in 2005 that an RFID tag
could spend at most 2000 GE for its security [28]), and also indirectly affect energy and
power consumptions. Usual figures of area reported for cryptographic implementations
usually contain the cost of storage – the registers that hold the key and the internal state
– as well as the combinatorial logic, which implements the actual operations. Therefore,
minimization of storage cost and combinatorial logic cost (by the means of reducing the
number of operations required to apply the cryptographic function) is a very desirable
goal. This can be achieved by design (for example by selecting a sparse diffusion matrix
in a hope to reduce the total number of XORs required to compute it), but the study of
their actual implementation can have a significant impact as well, and is often overlooked.

There are many different types of hardware implementations (serial, round-based, fully
unrolled, and other variations) and many different technologies available, each having
its own set of logic operations costs for example. All of these dimensions offer countless
opportunities for optimization and it is not trivial for a researcher or an engineer to find
the optimal hardware implementation for his own particular scenario. One can even extend
this observation to other platforms and other criteria than area: How can I optimize this
cipher on software since the logical operations’ costs are very different than for hardware?
How can I optimize the implementation of this lightweight cipher when I care about the
delay and not the area? An optimized implementation from the designers might not be
optimized for other use-cases, as we will see later.

For symmetric-key primitives, it is therefore interesting to study given an Sbox or
given a certain linear diffusion layer what is the best possible (or at least a very good)
implementation for a particular environment and how it can be obtained. Most of the
time, this work is performed by synthesizers that convert small lookup tables (LUT) to
boolean circuits: the implementer will design the general architecture of the cipher, but
will leave the optimization of the small components to automated tools. While these tools
do an excellent job at improving performances for generic functions, their output might
not be optimal.

Our Contributions. In this article, we propose a new automated tool, LIGHTER,1 that
can either search for new lightweight cryptographic components or find optimized imple-
mentations of lightweight components, such as Sboxes or diffusion matrices. This tool is
based on several advances.

First, we introduce a graph-based meet-in-the-middle (MITM) search algorithm that
can generate an efficient implementation of a small (linear or non-linear) function given
a certain set of available instructions and their corresponding costs. This algorithm is
simple yet extremely generic and can be used for many purposes. The most obvious
utilization is to compute the smallest implementation of lightweight encryption building
blocks, by encoding the logical instruction area costs inside the algorithm’s input costs.
This allows an implementer to easily obtain very good implementations that exactly match
his hardware configuration. The algorithm can also be used to optimize for delay instead
of area, or to compute the best software implementation (by simply setting all the logic
operations to the same cost). Another example would be to minimize the amount of linear
or non-linear operations of a given function by setting the operations cost accordingly,
which would be very useful for multi-party computation, zero-knowledge proofs, masking
against side-channel attacks or fully homomorphic encryption schemes [2]. More utilizations
are probably possible.

1http://jeremy.jean.free.fr/pub/fse2018_layer_implementations.tar.gz
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The time and memory complexities of this first algorithm are directly related to the
number of instructions considered in the implementation, which can therefore grow beyond
practical ranges for high numbers of instructions. Thus, we propose in a second part
another algorithm that computes good (but not-necessarily optimal) implementations of
small functions, without specific limitation on the number of instructions. The idea is to
perform a divide-and-conquer approach and improve locally sub-parts of a given starting
implementation. This approach can therefore be seen as a tradeoff between optimality of
the output and tractability of the computation.

Combining both algorithms leads to very good results. Namely, we first examine
the area-optimized implementation of finite field multiplications over GF(24) and GF(28)
and show that many multiplication coefficients are actually much cheaper than originally
thought. This allowed us not only to find new best diffusion matrices (for example the new
best 4×4 involutory diffusion matrix over GF(24)), but also to improve the implementation
of many existing ones (the diffusion matrices of the AES block cipher, the WHIRLPOOL or
Grøstl hash functions being some of them).

Linear layers are not the only components that can be handled. We apply LIGHTER
to search for area-optimized implementations of several 4-bit Sboxes and we show that
our tool outperforms the state-of-the-art synthesis tool ABC almost all the time. Besides,
when given the output from our tool, ABC improves over its own implementation obtained
from the lookup table of the Sbox. We note that due to legal reasons, we only compare
our algorithms to the academic tool ABC and not with other proprietary widely-used
algorithms, whose usage are restricted by non-disclosure agreements. However, we are
confident that similar conclusions could be drawn with such tools.

LIGHTER does have some limitations. For example, it does not always guarantee that a
given implementation is optimal according to the constraints provided as input. This is
particularly true for non-linear layers, as we need to combine several operations to ensure
that the instructions used are invertible. Besides, unlike for general synthesizers, LIGHTER
will mainly work for small functions (like 4-bit Sboxes) since for larger sizes, the tool
will require too much memory and computation. Yet, this limitation does not apply to
most lightweight designs for which small cryptographic components are a requirement.
Finally, we emphasize that LIGHTER is currently not handling the case of optimizing FPGA
implementations, which requires a very different optimization strategy.

Organization of the Paper. In Section 2, we first recall some previous works on the
implementation of linear and non-linear layers and we introduce some preliminary notions.
Then, in Section 3, we introduce two algorithms that search for efficient implementations of
small functions, the core of our tool LIGHTER. In Section 4, we propose several heuristics to
further help the efficient implementations search, and in Section 5 several implementation
improvements of known matrices, but also new efficient matrix candidates. Eventually, we
provide further results by application of the tool on non-linear layers in Section 6.

2 Preliminaries
2.1 Previous Work
In the past few years, there has been an important focus on lightweight cryptography with
several new research directions. Among them, we can distinguish two main dimensions,
which are the search/implementation of linear/non-linear layers. We recall briefly some of
the main results related to our paper in the following.

Linear Layers. Most of the recent work focuses on searching for lightweight maximum
distance separable (MDS) diffusion matrices to be used in SPN, that is matrices that provide
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maximum diffusion property. In [29], the authors proposed quantifying the hardware
implementation cost of diffusion matrices by counting the number of XOR gates needed
to implement the linear layer (simply called XOR count of the matrix). Several works
like [31,32,40,42] adopted this metric and search for different types of lightweight diffusion
matrices. In [10], the authors used a single field element to construct new lightweight
left-circulant matrices. Notably in [31], the authors considered invertible binary matrices
as the entries of the diffusion matrix rather than field elements. The non-commutative
property of the invertible binary matrices allows them to construct involution (self-inverse)
MDS circulant matrices of order 4 and 8, which was proven to be non-existent over finite
fields GF(2n) [26]. More details about these papers will be discussed in Section 5.2.

Non-linear Layers. The research line studying the implementation of cryptographic non-
linear functions with few input variables (e.g., less than eight) falls within the much
broader domain of logic synthesis [21]. There have been extensive research in this area, in
particular with applications to Very Large Scale Integration (VLSI), see [16] for instance.
While general circuit minimization problems are known to be ΣP2 -complete [17], there are
several heuristic algorithms that provide suboptimal solutions, such as BOOM [27] or the
more commonly used ESPRESSO algorithm [37], which is probably implemented in many
commercial synthesizers.

In the particular case of small cryptographic building blocks (e.g., 4-bit to 4-bit
functions), the same heuristics algorithms seem to be used by the general synthesizers
but it does not seem infeasible to reach optimal solutions due to the small dimension of
the problem. Several academic papers carry out either full or partial exhaustive searches
on the 4-bit permutations space from different points of view. Indeed, this search space
has a size within practical reach (even without elaborated pruning strategies) as it “only”
contains 24! ≈ 244.2 permutations.

For instance in [46], the authors look for efficient bit-sliced implementations of 4-bit
permutations grouped in affine equivalence classes. The enumeration relies on a depth-first
traversal of a tree labeled by permutations, where one goes down one level by applying
one operation from AND, OR, XOR, NOT, and MOV. The search uses extra memory unit
(in the form on an additional temporary register) and applies the rules from Osvik [34],
which essentially provide ways to add cuts in the tree (idea initially applied to optimize
the software implementation of SERPENT [12]). The results described by the authors
cover about 90% of the search space, and they derive a very small 9-instruction software
implementation of a 4-bit permutation with good cryptographic properties (differential
probability and absolute linear bias being 2−2).

In [38], Saarinen enumerates and classifies all 4-bit permutations up to permutation
equivalence (about 227 equivalence classes). One of the reasons to introduce this class
pertains to the similarity of the implementations of the elements within the same class,
which in general is not the case for the elements within a same affine equivalence class.
The main contribution of the paper is the classification of the permutation equivalence
classes with respect to cryptographic properties and the introduction of so-called Golden
Sboxes which maximize all these criteria.

More recently, Boyar, Matthews and Peralta introduced in [14] a new technique
for combinational logic optimization which essentially relies on a two-step algorithm
successively reducing the number of non-linear then linear gates required. They apply this
algorithm to the AES Sbox and improve upon previous results, most notably the Canright
decomposition from [18]. Later, several papers improved under various metrics the design
of the AES Sbox, for instance [1, 49,52].

In [19], the authors construct a small implementation of an 8-bit Sbox from a small
implementation of a 4-bit Sbox. The main contribution is to deduce cryptographic
properties of the large Sbox from properties of the small Sbox while at the same time
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ensuring the implementation overhead is minimized.
In [3], the authors introduced a metric called depth to estimate the path delay of

an Sbox, and designed two new Sboxes Sb0 and Sb1 with small delay as part of a new
energy-efficient cipher called MIDORI. Based on this metric, the authors of [23] developed
an Sbox depth evaluation tool, which computes the logical operation expression with least
depth of a given 4-bit Sbox.

Finally in [43], Stoffelen models the problem of finding an efficient implementation (in
terms of number of gates) of a lightweight Sbox as a SAT problem. Additional criteria like
number of non-linear gates or depth can be injected in the SAT problem, which is then
solved more or less efficiently using off-the-shelf SAT solvers. However, we note that this
technique does not allow to optimize the implementation depending on the technology that
will be used. Thus, it is likely to give implementations that will be rather good in general,
but not really optimized for a particular technology, as we will see in our comparisons.

2.2 Preliminaries for Linear Layer
The linear layer of a Substitution-Permutation Network (SPN) can usually be represented
by a so-called diffusion matrix, that mixes k words of c bits into k other c-bit words
to create the diffusion. The coefficients of a diffusion matrix usually belong to some
finite field GF(2c) (while some exceptions like [31] exist), and the multiplication of the
finite field elements are defined by some irreducible polynomial2 of degree c. When
necessary, we append the irreducible polynomial p(X) in hexadecimal form to the finite
field: GF(2c)/p(X). We also denote the general linear group of degree c over a field K by
GL(c,K).

A Maximum Distance Separable (MDS) diffusion matrix is one that has the maximum
diffusion power and relies on an MDS code. This property offers perfect diffusion as
changing m words of the inputs changes at least k−m+ 1 of the outputs [47]. It is known
that a necessary and sufficient condition for a matrix to be MDS is that all its square
submatrices should be invertible (non-singular) [33], and as a consequence, it is necessary
that all the coefficients of an MDS matrix are nonzero. A typical example of an MDS
diffusion matrix appears in the MixColumns operation of the AES.

As proposed in [29], the hardware implementation cost of a diffusion matrix can be
quantified by counting the number of XOR gates needed to implement it. Note that for
MDS matrices, the k − 1 many c-bit XORs per row (so-called connecting XORs) are a
constant and incompressible cost. However, the variable costs are the implementation
costs of the field multiplications, which is what we are interested in optimizing.

Example 1. The application of the MixColumns operation of the AES can be expressed as
a multiplication by a diffusion matrix M over GF(28)/0x11b,

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


︸ ︷︷ ︸

M


a
b
c
d

 =


2a⊕ 3b⊕ c⊕ d
a⊕ 2b⊕ 3c⊕ d
a⊕ b⊕ 2c⊕ 3d
3a⊕ b⊕ c⊕ 2d

 ,

where (a, b, c, d)> is a column of the state and ⊕ denotes a c-bit XOR. In the case of the
AES, each ⊕ costs 8 XOR gates.3 Therefore, the total cost to implement this diffusion
matrix is 4× (C(2) + C(3) + 24) XOR gates, where C(α) is the implementation cost of
the field multiplication α.

2As seen in [10,39], the choice of basis also plays a part in the representation of the elements. In this
work, we only consider the polynomial basis as it is the most popular choice of basis.

3In the sequel, an XOR gate refers to a 2-input XOR gate.
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We address two different problems in the paper: finding new MDS matrices with
smaller implementation costs, and optimizing these costs for already known matrices.
In both cases, we start by improving the implementation cost of the multiplication of
the field elements, and we then either construct new lightweight MDS diffusion matrices,
or we derive an optimized implementation of a given MDS matrix based on these new
implementation costs.

Therefore, the linear layer discussion in this paper is split into two parts. We first
present the method to improve the implementation costs of the field elements, then based
on this metric, we search for new lightweight diffusion matrices.

Multiplication Matrix of Finite Field Elements. Given a finite field GF(2c), we can
represent its elements using c-tuple vectors over GF(2). The multiplication of a nonzero
element α ∈ GF(2c) can be viewed as a left multiplication matrix of order c over GF(2) that
is often known as multiplication matrix and denoted Mα [10,39,42]. One can quickly infer
that multiplication matrices of nonzero element are invertible and pairwise-commutative,
since nonzero elements in GF(2c) are invertible and field multiplication is commutative.

d-XOR metric. In [29], the authors proposed to quantify the implementation cost of a
field element multiplication by directly counting the number of ‘1’s in each row of the
multiplication matrix. We call this metric d-XOR.

Definition 1 (d-XOR, [29]). The d-XOR value of a finite field element α ∈ GF(2c)/p(X)
is a metric to estimate the number of XOR operations needed to implement the field
multiplication by α: x→ αx. It is counted as the Hamming weight of the multiplication
matrix Mα minus the number of rows, and denoted by d-XOR(Mα) = ω(Mα)− c, where
ω(Mα) is the number of ‘1’s in Mα and c is the number of rows. When it is clear from
the context that Mα refers to the multiplication matrix for α: x→ αx, one simply writes
d-XOR(α).

Note that this only provides an overestimation of the minimal implementation cost
of the finite field elements: in practice the number of XOR operations required could be
smaller. In the sequel, we introduce another metric to quantify the implementation cost.

s-XOR metric. In practice, given an arbitrary input vector, we can implement any finite
field multiplication in place, that is by updating the components of the vector without
using extra memory storage. This can be realized by performing a sequence of XOR
instructions (e.g., Ri ← Ri ⊕Rj for some rows Ri and Rj).

Definition 2 (s-XOR). The s-XOR of a field element α is the minimum number of XOR
operations needed to implement the left multiplication of a multiplication matrix Mα,
where the minimum is taken over all implementation sequences. We denote it by s-XOR(M)
for an invertible binary matrix M, or simply s-XOR(α) if the matrix is Mα.

Example 2. Given the finite field GF(23)/0xb, the multiplication of α = 7 seen as
(1, 1, 1) ∈ (GF(2))3 can be computed by:

(1, 1, 1)(b2, b1, b0) = (b2 ⊕ b0, b2 ⊕ b1, b1)⊕ (b1, b2 ⊕ b0, b2)⊕ (b2, b1, b0)
= (b1 ⊕ b0, b0, b2 ⊕ b1 ⊕ b0),

where (b2, b1, b0) is an arbitrary element of GF(23) ∼= (GF(2))3. Expressing the same
computation as a matrix multiplication, it rewrites as0 1 1

0 0 1
1 1 1

b2
b1
b0

 =

 b1 ⊕ b0
b0

b2 ⊕ b1 ⊕ b0

 .
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From the multiplication matrix, we can see that d-XOR(α) = 3 XOR instructions.
To find one s-XOR value for α, we note that b1 ⊕ b0 appears in both the first and third
components. Hence in practice, we can upward-rotate the input vector components, XOR
the second component to the first, followed by XORing the first component to the third
to obtain the desired output. We can easily verify that such sequence has the minimum
number of XORs to implement the multiplication matrix. Therefore, in that case, we get
s-XOR(α) = 2 < d-XOR(α).

Consequently, our goal is to find an optimal sequence (with the least number of XOR
instructions) for any given multiplication matrix, or more generally, for any invertible
binary matrix.

3 A Graph-Based Search
We now describe two generic algorithms that produce implementations of functions given a
set of Boolean instructions B relying on some bitwise Boolean operation like AND (∧), OR
(∨), XOR (⊕), NOT (¬), etc. We make the distinction between operation and instruction
to capture the need for an internal state to produce an implementation. For instance, B
could contain the following instructions

x← x ∧ y, x← x ∨ y, x← x⊕ y, x← ¬x,

if we are interested in software implementations, or instructions based on logical 2-input
gates like NAND, NOR, XOR, XNOR if we consider hardware implementations:

x← ¬(x ∧ y), x← ¬(x ∨ y), x← x⊕ y, x← ¬(x⊕ y).

Definitions and Notations. In the rest of the paper, we call an implementation only
using instructions from a set B a B-implementation. In the case where B only contains the
XOR instruction, we call them XOR-implementations. Furthermore, since all the functions
we consider are GF(2c)→ GF(2c), we make no distinction between the function f and the
ordered sequence (f(x))x∈GF(2c) for a predetermined ordering of GF(2c), and we use the
term function to refer to both objects. Additionally, we define one4 B-implementation IfId
of a function f as the sequence ((fi, oi))i=1,...,n, transforming the identity function into
the function f using the instructions oi ∈ B and intermediate functions fi, for i = 1, . . . , n.
We represent it by:

Id
o1→ f1 · · ·

on→ fn = f.

More generally, we introduce Igf to represent the sequence transforming a function f

into another function g, and denote |Igf | its length in terms of number of instructions
the sequence contains. For simplicity, we write IfId as If . The concatenation of two
implementations Igf and Ihg is denoted by Igf + Ihg . Finally, we denote by ‖o‖ the cost
assigned to the instruction o ∈ B and abuse notations to define the cost of an implementation
Ifg = ((fi, oi))i=1,...,n by ‖Ifg ‖ =

∑
i‖oi‖.

The first algorithm described below finds optimally small B-implementations of functions
for user-defined costs of each element in B. The problem solved can be expressed as an
optimization problem where all the feasible solutions consist in B-implementations of
the input function, and are weighted by summing the individual cost affected to each
instructions from B. The algorithm then finds (one of) the best solution(s) using a
graph-based approach (Section 3.1).

4Note that a function can be implemented in more than one way.
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The second algorithm comes into play when the first one fails at producing the optimal
solution (Section 3.2). Instead, by starting from a heuristically found B-implementation of
the input function, the algorithm incrementally reduces it to a smaller one under the same
metric by locally applying the first algorithm.

3.1 Optimal B-Implementations Using MITM Technique
We explicit in this section an algorithm allowing to reach optimally small B-implementations
of a given function. We recall that by optimal, we mean an implementation that minimizes
an integer objective function defined as the cumulative sum of each individual cost ‖o‖ of
the instructions o used.

The algorithm relies on a generic meet-in-the-middle strategy that can accommodate
different logical instructions with possibly different costs (e.g., area, delay, energy consump-
tion, etc). As a result, the technique applies to any linear and non-linear cryptographic
building blocks and targets any technology for specific user-tuned parameters.

The algorithm takes a function f : GF(2c)→ GF(2c) as input, and outputs the circuit
implementing f using a set of logical instructions B parameterized by some costs. We
restrict the functions to those defined over the binary field GF(2c) of order c to rely on a
bit-sliced representation of the functions (see representation details in Section 3.3).

At a high level, the algorithm independently starts from the identity function and
from the target function f , and expands each of them to sets of functions constructed by
applying all the logical instructions from B. Going backwards from f may induce a high
branching depending of the set B: we address this in Section 4. The process stops when the
two constructed sets have a non-empty intersection that defines a sequence transforming
the identity function into f .

We describe the algorithm as a solution to a graph problem, where the vertex set V
represents the functions and there is an edge (v1 → v2) ∈ E between two nodes if v2 can
be deduced from v1 by applying an instruction from B. Then, the algorithm looks for
the shortest path between the source node S (representing the identity function) and the
target node T (representing the function f), where the distance is defined by summing the
cost of each traversed edge (instruction).

At every step of the execution, the algorithm maintains an integer counter λ and the
subgraph of all functions reachable from the root node at a distance at most λ. The
initialization simply sets the counter to 0 and inserts the root node as starting point. Then,
the graph of reachable functions is incrementally constructed by computing the closest
nodes (functions) to the root not yet included in the graph, to finally add and connect
those new nodes. Internally, all the nodes at the same distance from the root are stored in
a same (lexicographically sorted) list, and there are as many lists as different distances.
This allows to efficiently generate the newly introduced nodes.

We give a simplified pseudo-code description of this algorithm in the following Algo-
rithm 1. The MitM function takes the two functions f0 and f1 as inputs and possibly a
limit Λ after which the algorithm will abort. The returned value is one implementation
If1
f0
. In the current case where we look for one implementation of the f function, we call

this algorithm with MitM(Id, f,∞), with Id the identity function. Later in Section 3.3,
the first function f0 will not necessarily be Id, and Λ will be useful. For simplicity, we omit
the details of GetImplementation(v0, I, v1), which simply retrieves the full sequence of
instructions (i.e., the implementation) from the traversed edge between the root node v0,
the half-way node I belonging to the two subgraphs, and the target node v1. Similarly,
we skip the specifics of Conv(f) which converts a function f : GF(2c)→ GF(2c) into its
bit-sliced representation and that of Succ(v, o), which returns the functions reachable
from v using the instructions o (both are detailed in Section 3.3).

The core of the algorithm lies in the Expand function, which generates new nodes in
the graph. As mentioned before, we structure the nodes of the set V according to their
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Algorithm 1 – Meet-in-the-Middle Implementation Search (Simplified).
1: function MitM(f0, f1[,Λ =∞])
2: v0 ← Conv(f0), λ0 ← 0, V 0

0 ← {v0}, G0
def= (V0, E0)← ({V 0

0 }, ∅)
3: v1 ← Conv(f1), λ1 ← 0, V 0

1 ← {v1}, G1
def= (V1, E1)← ({V 0

1 }, ∅)
4: σ ← 0
5: while λ0 + λ1 < Λ do . Possible limitation to abort the algorithm
6: (Gσ, λσ)← Expand(Gσ, λσ)
7: I ← V0 ∩ V1 . Look for meet-in-the-middle collision
8: if I 6= ∅ then return GetImplementation(v0, I, v1)
9: σ ← σ ⊕ 1
10: return ∅
1: function Expand(G = ({V 0, . . . , V λ−1}, E), λ)
2: V λ ← ∅, Eλ ← ∅ . Initialize (V λ, Eλ)
3: for all o ∈ B do . For all possible instructions
4: c← ‖o‖ . Retrieve the cost of instruction o
5: for all v ∈ V λ−c do . Check whether a node in V λ can be created
6: S ← Succ(v, o) . All successors of v using instruction o
7: V λ ← V λ ∪ S
8: Eλ ← Eλ ∪ {v → w, w ∈ S}
9: G ← ({V 0, . . . , V λ−1, V λ}, E ∪ Eλ) . Insert and connect new nodes (if any)
10: if V λ = ∅ then . If there are no possible nodes at distance λ, try λ+ 1
11: return Expand(G, λ+ 1)
12: else
13: return (G, λ)

distance to the root. Namely, if node v is at distance d from the root, we store it in V d,
and then V = {V d, d}. Now, Expand(G, λ) fills V λ from the nodes already present in G
using the instructions in B.

We emphasize that Algorithm 1 gives a simplified version of the actual algorithm
implemented in our tools. Indeed, in this simple form, the algorithm may not return the
optimal result as the search stops as soon as one collision has been found between the two
subgraphs G0 and G1 (Line 8). We implement instead what can be seen as a bi-directional
Dijsktra’s shortest path finding algorithm, which continues executing the main while-loop
of Line 5 to keep expanding the subgraphs until the current best implementation cannot
be further improved.

We give a visual example of the graph construction in Figure 1.

V 0 = {v0}

V 67 V 100 V 167

Figure 1: Example of a graph constructed by Expand. The set B contains three hypo-
thetical instructions of cost 67, 100 and 167, which implies that nodes at distance 167 from
the root v0 can be reached from nodes in V 100, V 67, or V 0.
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3.2 Efficient B-Implementations
The meet-in-the-middle algorithm presented in the previous section outputs optimal B-
implementations of general functions f : GF(2c)→ GF(2c), c > 0. However in practice,
the computational and memory complexities may restrict its application only to small
functions (e.g., c ≤ 4), and do not apply to all functions for higher c (although in some
particular cases, the algorithm can terminate, for instance for linear functions). In case
the algorithm does not terminate, no solution is returned. The algorithm presented below
overcomes this limitation.

The main idea is to start from a heuristically found B-implementation of the target
function f and iteratively reduce it locally using the previous MitM optimal algorithm for
some finite limit value Λ. We assume in this section that a B-implementation of a function
f is known, and concentrate on minimizing it. We partially address the problem of finding
one initial implementation in Section 4.

In the sequel, we assume that the known B-implementation If equals the sequence
((fi, oi))i=1,...,n. To find another implementation I ′f of f such that ‖I ′f‖ ≤ ‖If‖, we start
by fixing a bound Λ ≥ 2 for the time spent in the underlying meet-in-the-middle algorithm
MitM. Then, we recursively consider all the decompositions of If by splitting it in parts
containing between two and Λ instructions. For all the partial implementations Ifβfα of
length at most Λ, we apply the previous algorithm with the Λ parameter: MitM(fα, fβ ,Λ).
As we know there exists at least one B-implementation transforming fα into fβ in at most
Λ instructions, this call necessarily terminates and may produce an implementation with a
smaller cost. Then, for all the decompositions, the algorithm selects the one that minimizes
the overall cost. We repeat this process as long as the implementation cost keeps reducing
and return it if no further improvement occurred.

We give a simplified pseudo-code description of this algorithm that we call ChainMitM
in the following Algorithm 2. The initial call to decrease the implementation cost of I
is ChainMitM(I,Λ), which subsequently calls the recursive function Split. In case of
success, the returned implementation has a cost strictly smaller than that of I, otherwise,
I is returned.

3.3 Graph Vertex and Edge Representations
We specify in this section details about the representation of the functions serving as
nodes in the graph. We differentiate the general case where the vertices are all functions
GF(2c) → GF(2c) from the situation where we restrict the space of functions to linear
ones only. While the same algorithms apply for either type, the representation of linear
functions can be more compact. In both cases, we also specify how the functions are linked
together by the edges representing the logical instructions.

General Functions. To encode a function f : GF(2c) → GF(2c), at least c · 2c bits are
required as there are 2c·2c different functions having this signature. We use the technique
called bit-slicing, which provides a natural way to optimally encode such functions. The
idea is to see the function as a vectorial Boolean function and encodes the truth table of
every c Boolean functions independently.

For example, as seen in Table 1 in the case of the PRESENT Sbox S (a permutation over
GF(24)), we can see S as a function x ∈ GF(24)→ (y3, y2, y1, y0) ∈ (GF(2))4 and simply
encode the c truth tables yi : GF(24)→ GF(2) as 2c-bit words. In this example, we would
represent S as the 4-tuple of 16-bit words (0x9b70, 0xe16c, 0x32e5, 0x59a6). Similarly, the
identity permutation over GF(24) would be represented by (0x00ff, 0x0f0f, 0x3333, 0x5555).

Having the function encoded in this form allows to perform a single Boolean instruction
on all input values from the domain at once. That way, a tuple vf = (v1

f , v
2
f , . . . , v

c
f )

representing function f : GF(2c)→ GF(2c) could be transformed to (o(v1
f , v

2
f ), v2

f , . . . , v
c
f )
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Algorithm 2 – Improve Heuristic Implementation.
1: function ChainMitM(I,Λ)
2: do
3: m← ‖I‖
4: I ← Split(I,Λ)
5: while ‖I‖ < m
6: return I . Return a possibly optimized implementation

1: function Split(Ifβfα ,Λ)
2: I ← Ifβfα . Try to find a sequence smaller than I
3: ((fi, oi))i ← I
4: l← |I| . Length of the sequence
5: m← ‖I‖ . Current best cost
6: if l ≤ Λ then return MitM(fα, fβ ,Λ) . Base case
7: for λ = 2, . . . ,Λ do . General case
8: for t = 0, . . . , l − λ do
9: I0 ← Split(Ifα+t

fα
, λ)

10: I1 ← Split(Ifα+t+λ
fα+t

, λ)
11: I2 ← Split(Ifβfα+t+λ

, λ)
12: if ‖I0‖+ ‖I1‖+ ‖I2‖ < m then
13: I ← I0 + I1 + I2 . New shorter sequence found
14: m = ‖I‖
15: return I . Return a possibly optimized implementation

Table 1: Bit-sliced representation of the PRESENT Sbox S : x ∈ GF(24)→ (y3, y2, y1, y0) ∈
(GF(2))4 used in our algorithms.

S(x) 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2 Hex

y3 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 0 0x9b70
y2 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0xe16c
y1 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0x32e5
y0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0x59a6

by applying the Boolean instruction v1
f ← o(v1

f , v
2
f ). We give in the following Table 2 an

example of the application of an XOR instruction.
In the following Section 4 on heuristics, we precise which specific instructions B we

used in our search of non-linear function implementations.

Linear Functions. In the more particular case where the functions f : GF(2c)→ GF(2c)
are known to be linear, less than c · 2c bits are required to encode f , as one can simply
encode f as a binary matrix of order c. Therefore, only c2 bits are required to encode all
linear functions defined over GF(2c).

Then, the graphs used in the algorithms only work with linear functions, and the set of
instructions B only contains linear Boolean operations as well. Again, this representation
enables to apply a single instruction to all the values of the domain, however in this case,
one implementation simply encodes row matrix operations transforming one end of the
path to the other. For the multiplication of finite field element, it can simply be represented
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Table 2: Bit-sliced representation of the identify function Id, and example of an application
of the instruction y0 ← y0 ⊕ y1.

Id(x) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hex

y3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0x00ff
y2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0x0f0f
y1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0x3333
y0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0x5555

y3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0x00ff
y2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0x0f0f
y1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0x3333

y0⊕ y1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0x6666

by its multiplication matrix as seen in Example 2.

Successors and Branching. In the Algorithm 1 previously described, the function
Succ(v, o) is used to generate the set of all functions reachable from v using the Boolean
instruction o ∈ B. Although the set of successors highly depends on the elements present
in B, we can still give an intuition about its cardinality. Indeed, what one usually call
branching represents the number of successors per node in the graph (related to the term
out-degree in graph theory).

For 2-variable instructions (e.g., x ← x ⊕ y or y ← x ⊕ y), the set of successors for
a function f : GF(2c) → GF(2c) would contain c(c − 1) functions. Depending on the
instruction considered, the branching can be higher or smaller.

4 Heuristics
We explicit in this section several heuristics we use throughout our work. One can split them
into two categories: first, the heuristic algorithms we use to generate B-implementations
of a given function (either linear or non-linear). This first type of heuristic is only used
when the MitM algorithm (Algorithm 1) targeting optimal B-implementations fails.

Then, we describe the restriction on the possible instructions due to the meet-in-the-
middle nature of our graph algorithms. Indeed, since the implementations are evaluated
in both direct and indirect directions, we heuristically impose the instructions in B to be
invertible. While this constraint naturally means that the B-implementations found by our
algorithms necessarily have a cost higher or equal than the overall optimal implementation
under the same metric (for any possible instruction set S, B ⊆ S), we nevertheless observe
that in practice, this heuristic already provides very good results.

4.1 Heuristics for Linear Layers
Heuristic Implementations for Linear Layers. To apply the ChainMitM algorithm
(Algorithm 2), we need an initial implementation as input for the optimization process. If
a starting implementation is unknown, we need a deterministic method to find it. When
the function f to implement is linear, we can encode it in the form of a binary matrix Mf

as seen before, and then finding an implementation of f reduces to finding a sequence of
instructions transforming Mf to the identity matrix. In the sequel, we assume Mf to be
invertible.

The problem of finding an initial implementation for a binary matrix can easily be
solved using the Gauss-Jordan elimination (GJE) method, a long-standing algorithm in
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linear algebra used to solve systems of linear equation. Indeed, as the matrix is invertible,
it can be regarded as a homogeneous system of linear equations with an unique solution.
One refers to [30] for a description of the GJE.

In the GJE algorithm, there is no fixed rule on the choice of the row and pivot to
perform the reduction. This freedom implies there are possibly several implementations
for the same function and allows to choose one that minimizes the number of instructions.
Hence, we exhaust all possible choices of row order and pivot point to search for the least
number of XOR instructions needed to reduce a binary matrix to a row permutation of
the identity matrix.

Example 3. Suppose we consider the linear function f : GF(24)→ GF(24) encoded by
the following binary matrix:

1 1 0 1
1 1 1 0
1 1 1 1
1 0 1 0


︸ ︷︷ ︸

Mf


b3
b2
b1
b0

 =


b3 ⊕ b2 ⊕ b0
b3 ⊕ b2 ⊕ b1

b3 ⊕ b2 ⊕ b1 ⊕ b0
b3 ⊕ b1

 .

where (b3, b2, b1, b0) is an arbitrary element of (GF(2))4.
However, by applying the GJE on the matrix, we find a sequence of 4 XOR operations

that simplifies the multiplication matrix to a row permutation of the identity matrix. The
instructions are R0 ← R0 ⊕R2, R2 ← R2 ⊕R1, R1 ← R1 ⊕R3 and R3 ← R3 ⊕R0, which
gives the permutation π = (3, 1, 0, 2) of the rows of the identity matrix.

Consequently, to implement the given binary matrix Mf , we first start by applying
π, followed by the reverse sequence of XOR instructions, and finally obtain the output
vector, that is:

b3
b2
b1
b0

 π−→


b1
b2
b0
b3

 R3←R3⊕R0−−−−−−−−→


b1
b2
b0

b3 ⊕ b1

 R1←R1⊕R3−−−−−−−−→


b1

b3 ⊕ b2 ⊕ b1
b0

b3 ⊕ b1


R2←R2⊕R1−−−−−−−−→


b1

b3 ⊕ b2 ⊕ b1
b3 ⊕ b2 ⊕ b1 ⊕ b0

b3 ⊕ b1

 R0←R0⊕R2−−−−−−−−→


b3 ⊕ b2 ⊕ b0
b3 ⊕ b2 ⊕ b1

b3 ⊕ b2 ⊕ b1 ⊕ b0
b3 ⊕ b1

 ,
This implementations yields 4 XORs which is smaller than d-XOR(Mf ) = 8.

Tweaking Gauss-Jordan Elimination Method. In GJE method, one may notice that
when a pivot is chosen from some row, that row is continuously used to update the other
rows. After which, that row will never be used again to update other rows. Therefore,
there are instances where GJE method would not be optimal (with respect to the number
of instructions).

In [11], Bernstein presented an algorithm (we call it DJB method) that also achieves
optimized implementations of linear functions. However, similarly to the GJE, due to the
nature of the algorithm there are instances where the output sequence is not optimal. To
find the shortest sequence, we could apply both algorithms and pick the best one. However,
we observe a simple way to simulate the behavior of DJB from the GJE strategy. Namely,
one needs to apply the GJE method on the transpose of the given matrix. In contrast
to the sequence obtained from GJE, a chosen row will be continuously updated by other
rows.

Let Ei,j be the identity matrix of order n with an additional ‘1’ on the i-th row and
j-th column, where i, j ∈ {1, 2, ..., n}. Each XOR instruction can be represented by a
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left-multiplication of some Ei,j to an n-tuple column vector (x1, x2, ..., xn)>, it is basically
updating the vector component xi ← xi ⊕ xj to the column vector. On the other hand, if
a row vector is right-multiplied by the same matrix, the update becomes xj ← xj ⊕ xi.

Since a given invertible binary matrix M can be decomposed into a sequence of XOR
operations and a bit permutation, we can express it as

M = Ei1,j1Ei2,j2 · · ·Eis,jsP,

where P is a permutation matrix. Let u be a column vector, the left multiplication yields:

Mu = Ei1,j1 (Ei2,j2 · · · (Eis,js(Pu)) · · · ) .

On the other hand, starting from the transpose matrix M>, we can also rewrite it
using the GJE as:

M> = Ei′1,j
′
1
Ei′2,j

′
2
· · ·Ei′t,j

′
t
P′,

for another matrix permutation P′. By rewriting the multiplications, this gives

Mu =
(
u>M>)> =

(
(· · · ((u>Ei′1,j

′
1
)Ei′2,j

′
2
) · · ·Ei′t,j

′
t
)P′
)>

= P′>(Ej′
t,i

′
t
· · · (Ej′

2,i
′
2
(Ej′

1,i
′
1
u)) · · · ),

where P′> also describes a permutation matrix. Hence, the decomposition of the transpose
matrix M> can also be used to derive an implementation of the matrix M.

As a result, to determine an initial implementation of a given invertible binary matrix
Mf (encoding a linear function f), we simply apply the GJE algorithm to both Mf and
M>

f and choose whichever sequence of XOR instructions is shorter.

4.2 Heuristics for Non-Linear Layers
Instruction Restriction in B. Unlike the linear instructions used to implement linear
functions, non-linear Boolean operations like NAND are not invertible. Consequently, it is
non-trivial to use instructions relying on those operations as an edge in our MITM technique
as we want to grow the graph in the backward direction too. Using non-linear instructions
induces a very high branching in the graph associated to the backward expansion, and
quickly reaches the practical memory complexity limit. Therefore, we require special
invertible instructions in B for the edges of the graph: these instructions are built from
combinations of linear and non-linear operations.

The general rules for creating the invertible instructions are as follows.

1. Only linear instructions are used to update the bits.

2. Non-linear instructions are only used to create temporary values from the bits.

3. Temporary values are used to update bits that are not used to create these temporary
values.

The only invertible instructions involving a single variable is x ← ¬x (NOT). For
2-variable instructions, the instructions are necessarily linear to be invertible, for instance
x← x⊕ y (XOR) and x← ¬(x⊕ y) (XNOR). For instructions of three or more variables,
we can compute any non-linear Boolean operation on all but one variable, store the output
bit in a temporary variable, and use it to linearly mask the last variable.

To give a concrete example, one set B of instructions that could be used in the
graph-based algorithms described is:

x← ¬x, x← x⊕ y, z ← ¬(x ∧ y)⊕ z, z ← ¬(x ∨ y)⊕ z.
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The main benefit of using such instructions is the reduced branching of the graph
expansion in the backward direction. In addition, the inverse function can be easily
implemented by simply reversing the instruction sequence. Examples of such construction
appear in the PICCOLO Sbox [41], and in the SKINNY family [9].

Finding an Implementation for the Non-linear Layer. Similar to the linear layer, when
the MitM algorithm cannot output an optimal B-implementation, it is possible to start
with an initial B-implementation and apply the second ChainMitM algorithm. We
devised a deterministic algorithm to reduce a given Sbox to an identity mapping using
instructions conforming to the previous rules, however, for all the 4-bit Sboxes that we
have tested, optimal B-implementations could be found using MITM technique. This
heuristic algorithm is not implemented in our current tool but investigating this direction
might serve as basis for future works.

5 Results on Linear Layers
We present in this section the results of our search on linear layer consisting of MDS
matrices. First, we detail the application of the graph-based search for (possibly optimal)
implementations of the individual field multiplications x→ αx, for all non-trivial element α
in the field (Section 5.1). Next, we discuss about some of the recent work on MDS diffusion
matrix search (Section 5.2), and describe our search parameters and some strategies for
searching new lightweight MDS diffusion matrices (Section 5.3). Finally, in the rest of
the section, we give the concrete implementations we obtained for several new and known
MDS matrices (Section 5.4).

5.1 Implementations of Individual Field Multiplications
We ran the MitM algorithm to search for the optimal implementation for field elements
over GF(24) and GF(28) defined by all possible irreducible polynomials of degree 4 and
8. For GF(24), the results show that all elements can be implemented with no more
than 5 XOR operations. For GF(28), our MitM technique could reach up to Λ = 12
XOR instructions in reasonable time and memory complexities. To give concrete numbers,
this search took a few hours and about 32-64 GB of RAM on a 16-core machine. For
elements that have no solution within 12 XOR instructions, we applied the GJE method
on both their multiplication matrix and its transpose to find an initial sequence and used
ChainMitM algorithm with parameter Λ = 12 to further improve the implementation
and obtain a (sub)optimal sequence.

Although the implementation of some field elements are not optimal, we can already
observe the following proposition.

Proposition 1. For any nonzero multiplication matrix Mα of the field element α ∈
GF(2c), where c = 4 or c = 8, there exists an XOR-implementation of Mα such that
s-XOR(α) ≤ d-XOR(α).

We checked for all the irreducible polynomials for GF(24) and GF(28) that the proposi-
tion holds, and the previous Example 2 shows a case where the inequality is strict. Besides,
we conjecture that this property also holds for any invertible binary matrix of arbitrary
order; that is:

Conjecture 1. Let c be a positive integer and M ∈ GL(c,GF(2)). Prove that there exists
an XOR-implementation of M such that: s-XOR(M) ≤ d-XOR(M).

In summary, the s-XOR count of the field elements is smaller or equal than its d-XOR
count. This shows that in practice, most of the field elements can actually be implemented
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with less XOR gates than previously known. The implementations of the field elements
(except trivial elements 0 and 1) from GF(24)/0x13 are presented in Appendix A.1.

After obtaining the lists of s-XOR counts of elements in GF(24) and GF(28) over all
possible irreducible polynomials, we search for new lightweight MDS diffusion matrices
based on this new metric. In this paper, we use the terms d-lightest and s-lightest to
describe matrices that have the least XOR count under the d-XOR and the s-XOR metrics,
respectively.

In recent years, there are several papers presenting different ways to search for new
lightweight MDS diffusion matrices. In the following section, we discuss the strengths and
limitations of their methodologies. Next, we present our strategy to search for lightweight
MDS diffusion matrices.

5.2 Previous MDS Diffusion Matrix Searches
To the best of our knowledge, the authors of [29] were the first to propose the d-XOR
metric. In addition, they proposed the sub-field construction to design a lightweight MDS
matrix over some finite field K using a matrix of the same order but over some smaller
sub-field L of K. The idea of the sub-field technique is rather simple: to construct an
MDS matrix over finite field GF(2mc), we use m copies of an MDS matrix5 over GF(2c).
Hence, the implementation cost of the matrix over GF(2mc) is m times the cost of the
matrix over GF(2c).

In [32, 42], the authors proposed compact equivalence classes (CEC) of Hadamard and
circulant matrices to reduce the exhaustive search space on these two types of matrices and
presented the d-lightest MDS Hadamard and circulant matrices over GF(24) and GF(28).
Using these equivalence classes, they could complete the search for MDS Hadamard and
circulant matrices of order 8, which was previously intractable.

In [31], the authors extended the coefficients of a diffusion matrix from finite field
GF(2c) to invertible binary matrices GL(c,GF(2)), where c ∈ {4, 8}, and found new
lightweight MDS non-involution and involution 4× 4 Hadamard and circulant matrices
over GL(c,GF(2)). However, it is non-trivial to extend their search on matrices of order
8, essentially because the cardinality of GL(c,GF(2)) is much larger than that of GF(2c):
2c·(c−1)/2∏c

i=1(2i − 1)� 2c.
Using our s-XOR metric, the authors [10] constructed lightweight MDS 4× 4 and 8× 8

left-circulant matrices using a single field element α. Focusing on a single field element
allows them to explore all possible bases for representing finite field elements and search
for one with the minimum s-XOR count, while in the conventional way, as we did in this
paper, the polynomial basis is used to represent the finite field. The limitation of their
methodology consists in the structure of the matrices, that must have elements of the form
α±n for a field element a, and for small n, say n ≤ k

2 . Consequently, they consider only a
subclass of all the circulant matrices.

Recently, another paper [53] adopted our s-XOR metric to improve on the implementa-
tion of the AES diffusion matrix. They considered the AES diffusion matrix as a 32× 32
binary matrix and applied a heuristic algorithm to find a sequence of XOR instructions.
However, their approach is different from ours as we focus on optimizing the implementation
of individual elements, which also allow us to construct new lightweight diffusion matrices.

In [40], the authors searched for lightweight MDS Toeplitz matrices over GF(24) and
GF(28) based on the d-XOR metric. The advantage of Toeplitz structure over Hadamard
and circulant is the larger degree of freedom for the choice of the coefficients. In addition,
their empirical evidence showed that their MDS 4× 4 Toeplitz matrices over GF(24) and
GF(28) are the d-lightest possible MDS non-involution matrices over GF(24) and GF(28).

5One may also use different MDS matrices, the implementation cost is simply the sum of the cost of
the matrices.
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However, there are two limitations to the use of Toeplitz matrices. First, as proven by
the authors, MDS involution Toeplitz matrices of order 2m does not exist, which is a
widespread practical choice for the order of diffusion matrices. Second, the search for an
MDS Toeplitz matrix of order 8 seems intractable due to the large search space.

5.3 Our Search for Lightweight MDS Diffusion Matrices
Our search parameters for the lightweight MDS matrices have three dimensions: non-
involution or involution matrices, matrices of order 4 or 8, and matrix coefficients over
GF(24) or GF(28). These criteria have been chosen because they capture classical parame-
ters for the diffusion matrices used in practice.

When we search for lightweight MDS matrices, we start with some threshold value, τ ,
for the cost of the matrix, say the XOR count of some existing lightweight MDS matrix,
and search for MDS matrices that have lower cost than this threshold value. A simple
search pruning strategy is to arrange the field elements in the increasing order of its
s-XOR. When we pick an element for some coefficient, we check if the sum of the s-XOR of
elements in the matrix exceeds the threshold value, if it does, we do not need to consider
the remaining elements for that coefficient. In addition, recall that all coefficients of an
MDS matrix are nonzero, thus we do not consider element zero as a coefficient of the
matrix.

4× 4 MDS (Involution) Diffusion Matrices Over GF(24). To search for the s-lightest
MDS non-involution and involution 4× 4 matrices over GF(24), we do not put restriction
on the shape of the matrix (e.g., Hadamard, circulant, etc.). Instead, we apply an improved
exhaustive search over the entire matrix space. Although the entire space of 4× 4 matrices
over GF(24) counts as many as 264 elements, there are a couple of early-abort strategies
that we can use to discard invalid candidates prematurely, including the pruning of field
elements based on their s-XOR mentioned before.

The exhaustive search algorithm, ExhaustiveSearch, uses nested for-loops to enu-
merate the coefficients of the matrix in the following order:

1 2 3 4
5 8 9 10
6 11 12 13
7 14 15 16

 ,
where coefficients with low indices are enumerated first.

When we select an element for the 8th coefficient, we can compute the determinant
of the 2× 2 submatrix (with 1st, 2nd, 5th and 8th coefficients). If it is zero, we already
know that any choice for the remaining coefficients will not form an MDS matrix. Hence,
we can directly discard this element and pick another. Otherwise, if this submatrix is
non-singular, then we continue to pick an element for the next coefficient. Similarly, we
check the determinant of all the square submatrices (of any sizes) involving that coefficient.
This greatly reduces the search space as we prematurely discard many combinations of
coefficients. When all the square submatrices are non-singular (including the entire 4× 4
matrix), we have found an MDS matrix with lower cost than a threshold value. We store
that matrix, update this threshold value and continue the search. At the end of the
algorithm, we obtain the s-lightest MDS 4× 4 matrix over GF(24).

For involution matrices, we have an additional condition that the dot product of the
i-th row and j-th column of the matrix has to be one if i = j, and zero otherwise. Hence,
when we pick an element for the 7-th coefficient, we can check whether it is a possible
candidate for involution matrix. If the dot product of the 1st row and 1st column differs
from one, we can discard this element and pick another. The subsequent checks occur for
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Algorithm 3 – Lightest MDS Diffusion Matrix Search.
1: function MDSMatrixSearch(C,K, k, τ, inv)
2: if (dim(K) ≤ 4 and k ≤ 4) then
3: Mlightest ← ExhaustiveSearch(C,K, k, τ, inv)
4: else
5: Mlightest ← CirHadSearch(C,K, k, τ, inv)
6: return Mlightest

1: function CirHadSearch(C,K, k, τ, inv)
2: Mlightest ← ∅
3: for all S = {x0, . . . , xk−1} ⊂ K do . For all possible multisubsets of K
4: if ‖S‖ < τ then . Cost of the elements are obtained from C
5: Clist← GenCir(S, inv) . Generate CEC rep. of circulant matrices
6: for all M ∈ Clist do
7: if CheckMDS(M) then
8: τ ← ‖S‖
9: Mlightest ←M

10: Hlist← GenHad(S, inv) . Generate CEC rep. of Hadamard matrices
11: for all M ∈ Hlist do
12: if CheckMDS(M) then
13: τ ← ‖S‖
14: Mlightest ←M

15: return Mlightest

the 10th, 13th, 14th, 15th and 16th coefficients. If all dot products of rows and columns
satisfy the condition, the algorithm outputs the s-lightest MDS 4× 4 involution matrix
over GF(24).

We have implemented this algorithm, and the search for both non-involution and
involution arbitrary matrices took less than a minute on a personal computer.

Other Parameters of Diffusion Matrices. Scaling the algorithm for general 8×8 matrices
over GF(24) seems intractable as the input space contains 2256 elements. However, it
has been experimentally verified by the authors from [32] that there is no MDS 8 × 8
circulant matrix over GF(24). Therefore, we detail in the following the result of our search
on Hadamard matrices for both MDS non-involution and involution matrices over GF(24).

For matrices over GF(28), in addition to searching for lightweight MDS Hadamard and
circulant matrices, we use the sub-field technique to construct MDS matrices from the
s-lightest matrices over GF(24).

Using the concept of CEC of Hadamard and circulant matrices, the search space for
lightweight MDS Hadamard and circulant matrices reduces significantly. This allows to
perform an exhaustive search for these. The details of the CEC of Hadamard and circulant
matrices can be found in [42] and [32], respectively.

We give a simplified pseudo-code description of the algorithm (Algorithm 3) used for
searching lightweight MDS matrices. The MDSMatrixSearch function takes a list C
containing the implementation cost of the field elements, a finite field K = GF(2c)/p(X),
matrix order k, threshold value τ , and Boolean value for involution matrix inv. For our
work, we focus on field dimensions 4 or 8, and matrix orders 4 or 8. If both the field
dimension and matrix order are 4, we can apply the function ExhaustiveSearch as
described above. Otherwise, we apply function CirHadSearch. First, a (multi)subset S
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of k field elements, whose summation of the implementation costs is less than τ , is selected.
Next, S is used to generate the potential MDS matrix candidates using the functions
GenCir and GenHad. When the necessary condition for the candidate S to be MDS is
not satisfied, the function returns an empty set. For instance, it is known that involution
MDS circulant matrices do not exist [26], therefore whenever inv holds true, GenCir
returns an empty set. We omitted the details of the functions GenCir, GenHad and
CheckMDS as the conditions for MDS and construction of the CEC representatives of
circulant and Hadamard matrices are discussed extensively in [32, 42]. When a candidate
matrix is found to be MDS, we store it, update the threshold value and continue the
search. At the end of the algorithm, we obtain the s-lightest possible MDS matrix of the
given parameter. A simple early-abort strategy is to select subsets with the least possible
implementation cost, and gradually increase the cost when no MDS matrix is found. The
algorithm can be terminated prematurely once an MDS matrix is found.

5.4 Results on Linear Layers
In a nutshell, among the 23 = 8 categories of MDS diffusion matrix (that consist of non-
involution/involution matrices, matrices of order 4/8, and matrices over GF(24)/GF(28)),
we found new lightweight MDS matrices which outperform existing lightweight diffu-
sion matrices in four categories, and we improved the implementation of some existing
lightweight matrices and obtained smaller s-XOR counts in three categories. The case of
non-involution 4 × 4 matrices over GF(28) is the only one we do not improve: the best
result is from [31].

Recall that we are interested in minimizing the implementation costs of the field
multiplication matrices. We therefore only state the sum of the implementation costs
of the coefficients plus the connecting XORs in one row, and if the rows have different
implementation costs, we take the average cost for one row. For instance, if a 4× 4 MDS
matrix over GF(24) costs 2.5 + 12, it means that the average cost of the coefficients in
one row is 2.5, there are 12 connecting XORs in each row and the total cost is 58. We
also include the cost of its inverse matrix for reference. However, we emphasize that for
non-involution matrices, our searches focus on optimizing the direct cost.

In the following, we detail the results of our search in four paragraphs, first for matrices
over GF(24) and then over GF(28).

Lightweight MDS 4 × 4 Matrices Over GF(24). In our exhaustive search for the s-
lightest MDS 4× 4 arbitrary matrices over GF(24) (described in Section 5.3), we found
that the s-lightest matrix M4,n,4,

M4,n,4 =

0x1 0x1 0x1 0x2
0x1 0x2 0xd 0x1
0x2 0xd 0x1 0x1
0xd 0x1 0x2 0x1

 ,
outperforms the circulant matrix presented in [10]. As mentioned before, we found this
new matrix by an improved exhaustive search over the full space GL(4,GF(24)), while the
search from [10] relies on particular matrices in this space. Similarly for MDS involution
4× 4 matrices over GF(24), we found the s-lightest involution arbitrary matrix M4,i,4,

M4,i,4 =

0x2 0x1 0x1 0x9
0x1 0x4 0xf 0x1
0xd 0x9 0x4 0x1
0x1 0xd 0x1 0x2

 .
It is known that MDS involution circulant matrices do not exist over any finite field

GF(2n). Therefore, Hadamard matrices are commonly used to construct MDS involution
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matrices. An example of such a matrix can be found in the linear layer of Joltik, and
under our s-XOR metric, the results of our algorithms optimize the implementation of the
coefficients in this matrix.

The results are summarized in Table 3. As mentioned in Section 5, the authors of [10]
considered the representation of the field element under all possible bases. In their paper,
only the multiplication matrix of the field element is provided but not the irreducible
polynomial. Therefore in the table, we only state the size of the finite field but not the
irreducible polynomial.

Table 3: Comparison of 4× 4 MDS matrices over GF(24) and GL(4,GF(2)).

Matrix Implementation Ref.Field/Ring Type Inv. d-XOR(M) s-XOR(M) s-XOR(M−1) Opt Min

GF(24)/0x13 Arbitrary No 2.5 + 12 2.5 + 12 9.25 + 12 X s M4,n,4
GF(24)/0x19 Toeplitz No 2.5 + 12 2.5 + 12 11.5 + 12 X d [40]
GL(4,GF(2)) Circulant No 3 + 12 3 + 12 − X − [31]

GF(24) Circulant No 4 + 12 3 + 12 − − − [10]

GF(24)/0x13 Arbitrary Yes 5 + 12 3.75 + 12 X s M4,i,4
GF(24)/0x13 Hadamard-like Yes 4 + 12 4 + 12 X − [40]
GL(4,GF(2)) Circulant Yes 5 + 12 5 + 12 X − [31]
GF(24)/0x13 Hadamard Yes 6 + 12 5 + 12 X − Joltik

Opt: Implementations of coefficients have been optimized under the s-XOR metric.
Min: Lightest possible matrix under field/order/involution based on d/s-metric.
When the rows have different cost, we take the average cost of a row.

To have an idea of how an entire diffusion matrix can be implemented, we provide an
example of one possible implementation of the diffusion matrix M4,n,4 in Appendix A.2.
We emphasize that this implementation only gives an illustration of the implementation of
the entire diffusion matrix: further improvements are possible, for instance in ASIC if 3-
or 4-input XOR cells are available in the library used, or in software with less intermediate
registers.

MDS 8×8 Matrices Over GF(24). We observed that the Hadamard matrices presented
in [42] are among the s-lightest MDS Hadamard matrices that we have found. This means
that if we optimize the implementation of the field multiplications of the coefficients used
in these matrices, we obtain the s-lightest MDS non-involution/involution Hadamard 8× 8
matrices over GF(24). To be consistent, we name the non-involution Hadamard 8 × 8
matrices over GF(24) as M8,n,4,

M8,n,4 =



0x1 0x2 0x6 0x8 0x9 0xc 0xd 0xa
0x2 0x1 0x8 0x6 0xc 0x9 0xa 0xd
0x6 0x8 0x1 0x2 0xd 0xa 0x9 0xc
0x8 0x6 0x2 0x1 0xa 0xd 0xc 0x9
0x9 0xc 0xd 0xa 0x1 0x2 0x6 0x8
0xc 0x9 0xa 0xd 0x2 0x1 0x8 0x6
0xd 0xa 0x9 0xc 0x6 0x8 0x1 0x2
0xa 0xd 0xc 0x9 0x8 0x6 0x2 0x1


,
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Table 4: Comparison of 8× 8 MDS matrices Over GF(24).

Matrix Implementation Ref.Field/Ring Type Inv. d-XOR(M) s-XOR(M) s-XOR(M−1) Opt Min

GF(24)/0x13 Hadamard No 26 + 28 20 + 28 28 + 28 X − [42], M8,n,4
GF(24)/0x13 Hadamard No 28 + 28 21 + 28 28 + 28 X − WHIRLWIND [4]
GF(24)/0x13 Hadamard No 36 + 28 23 + 28 24 + 28 X − WHIRLWIND [4]

GF(24)/0x13 Hadamard Yes 36 + 28 25 + 28 X − [42], M8,i,4

Opt: Implementations of coefficients have been optimized under the s-XOR metric.
Min: Lightest possible matrix under field/order/involution.

and the involution Hadamard 8× 8 matrices over GF(24) as M8,i,4,

M8,i,4 =



0x2 0x3 0x4 0xc 0x5 0xa 0x8 0xf
0x3 0x2 0xc 0x4 0xa 0x5 0xf 0x8
0x4 0xc 0x2 0x3 0x8 0xf 0x5 0xa
0xc 0x4 0x3 0x2 0xf 0x8 0xa 0x5
0x5 0xa 0x8 0xf 0x2 0x3 0x4 0xc
0xa 0x5 0xf 0x8 0x3 0x2 0xc 0x4
0x8 0xf 0x5 0xa 0x4 0xc 0x2 0x3
0xf 0x8 0xa 0x5 0xc 0x4 0x3 0x2


.

In addition, we improve the implementation of the diffusion matrices from the hash
function WHIRLWIND using our s-XOR metric and make comparison with them in Table 4.

Lightweight MDS 4× 4 Matrices Over GF(28). Our search for MDS 4× 4 Hadamard
and circulant matrices over GF(28) shows that the Hadamard and circulant matrices
presented in [42] and [32] are among the s-lightest matrices found. Hence, we state the
improved XOR count of these matrices in Table 5.

On the other hand, the sub-field construction of MDS 4 × 4 matrices over GF(28)
using M4,n,4 and M4,i,4 generates new lightweight MDS matrices. Apart from the MDS
circulant matrix over GL(8,GF(2)), which is presented in [31], our sub-field constructed
MDS matrices outperform the existing lightweight MDS matrices under the s-XOR metric.
We also include for comparison the diffusion matrices of AES and ANUBIS with optimized
coefficient implementations.

MDS 8× 8 Matrices Over GF(28). In contrast to MDS 4× 4 matrices over GF(28),
the search for MDS 8× 8 Hadamard and circulant matrices over GF(28) has better results
than the sub-field construction. For the non-involution MDS matrices, the circulant matrix
presented in [32] denoted M8,n,8,

M8,n,8 =



0x01 0x01 0x02 0xe1 0x08 0xe0 0x01 0xa9
0xa9 0x01 0x01 0x02 0xe1 0x08 0xe0 0x01
0x01 0xa9 0x01 0x01 0x02 0xe1 0x08 0xe0
0xe0 0x01 0xa9 0x01 0x01 0x02 0xe1 0x08
0x08 0xe0 0x01 0xa9 0x01 0x01 0x02 0xe1
0xe1 0x08 0xe0 0x01 0xa9 0x01 0x01 0x02
0x02 0xe1 0x08 0xe0 0x01 0xa9 0x01 0x01
0x01 0x02 0xe1 0x08 0xe0 0x01 0xa9 0x01


,

is also an s-lightest MDS circulant matrix.
It is not surprising that it is lighter than the circulant matrix presented in [10] as our

search is an exhaustive search on circulant matrices while the latter considered a subclass
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Table 5: Comparison of 4× 4 MDS matrices over GF(28) and GL(8,GF(2)).

Matrix Implementation Ref.Field/Ring Type Inv. d-XOR(M) s-XOR(M) s-XOR(M−1) Opt Min

GL(8,GF(2)) Circulant No 3 + 24 3 + 24 − − − [31]
GF(24)/0x13 Sub-field No 2 · (2.5 + 12) 2 · (2.5 + 12) 2 · (9.25 + 12) X s M4,n,4
GF(28)/0x1c3 Toeplitz No 6.75 + 24 6 + 24 53.25 + 24 X d [40]

GF(28) Circulant No 7 + 24 6 + 24 − − − [10]
GF(28)/0x1c3 Circulant No 8 + 24 7 + 24 51 + 24 X − [32]
GF(28)/0x1c3 Hadamard No 13 + 24 11 + 24 52 + 24 X − [42]
GF(28)/0x11b Circulant No 14 + 24 12 + 24 53 + 24 X − AES [20]

GF(24)/0x13 Sub-field Yes 2 · (5 + 12) 2 · (3.75 + 12) X s M4,i,4
GL(8,GF(2)) Circulant Yes 9 + 24 9 + 24 − − [31]
GF(24)/0x13 Sub-field Yes 2 · (6 + 12) 2 · (5 + 12) X − [42]
GF(28)/0x165 Hadamard Yes 16 + 24 14 + 24 X − [42]
GF(28)/0x11d Hadamard Yes 22 + 24 20 + 24 X − ANUBIS [6]

Opt: Implementations of coefficients have been optimized under the s-XOR metric.
Min: Lightest possible matrix under field/order/involution based on d/s-metric.
When the rows have different cost, we take the average cost of a row.

of circulant matrices by building the circulant matrix from a single field element. We
also include the s-XOR count of the diffusion matrix from WHIRLPOOL and Grøstl for
comparison.

For MDS 8 × 8 involution matrices over GF(28), we found a new Hadamard matrix
M8,i,8,

M8,i,8 =



0x01 0x02 0x04 0x91 0x6a 0xb5 0xe1 0xa9
0x02 0x01 0x91 0x04 0xb5 0x6a 0xa9 0xe1
0x04 0x91 0x01 0x02 0xe1 0xa9 0x6a 0xb5
0x91 0x04 0x02 0x01 0xa9 0xe1 0xb5 0x6a
0x6a 0xb5 0xe1 0xa9 0x01 0x02 0x04 0x91
0xb5 0x6a 0xa9 0xe1 0x02 0x01 0x91 0x04
0xe1 0xa9 0x6a 0xb5 0x04 0x91 0x01 0x02
0xa9 0xe1 0xb5 0x6a 0x91 0x04 0x02 0x01


,

which outperforms the existing matrices like the Hadamard matrix from [32] and KHAZAD [7].
Interestingly, one of the coefficients in M8,i,8, namely 0x6a, has d-XOR of 36 but has
optimal s-XOR of 10. Thus, based on the d-XOR metric, it is unlikely that this element
will be considered in the search for lightweight MDS matrices. But now, knowing that
it can be implemented in 10 XOR operations, it became one of the coefficients for the
s-lightest MDS Hadamard matrix. Notably, some of the field elements in the diffusion
matrix of Grøstl and KHAZAD have s-XOR count more than 12, which implies that the
implementation cost is suboptimal and further improvements might be possible (since we
ran ChainMitM with parameter Λ = 12). The comparison of MDS 8× 8 non-involutive
and involutive matrices over GF(28) are summarized in Table 6.

6 Results on Non-Linear Layers
We now give our results related to small cryptographic non-linear permutations (Sboxes).
Our goal is to find small circuits implementing those permutations with respect to the overall
area for an ASIC implementation. Consequently, we tune the graph-based algorithms
previously described in Section 3 by selecting the logical instructions among the ones
available in some standard cell libraries, and calibrate their costs to represent their
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respective area. As a usual unit, we measure the gate sizes in terms of Gate Equivalent
(GE), which is a normalized ratio using the area of a 2-input NAND gate as common
reference. Our C++ implementations of the MitM algorithm usually find the optimal
B-implementation of 4-bit permutations in a few minutes to a few hours depending on
the permutation, using several gigabytes of RAM on a 24-core machine (with CPUs at a
frequency of 2 Ghz).

6.1 Previous Work

A notable previous work in the field of logic synthesis applied to cryptography is [43], where
the authors are interested in finding “small” implementations of 4- and 5-bit Sboxes. In
particular, they define “small” in different ways, by measuring the gate complexity (number
of combinatorial gates in the circuits), depth complexity (number of traversed gates),
bit-sliced complexity (number of software instructions), etc. Our work somehow relates to
the gate complexity optimizations performed in [43] with a major difference: in our case, we
do not stop at counting the number of gates, but we weight them differently according to
their area. We note that by applying the gate area to the SAT-produced implementations,
the overall area is higher than the area reached by our optimization technique (see below).
One simple way to reproduce the results from [43] using our algorithms would be to set
each operations in B to a constant cost, e.g. one. To obtain efficient implementations,
the authors from [43] rely on decisional SAT problems solved using dedicated algorithms.
However, after an offline discussion with the authors of [43], one emphasizes that writing
SAT problems encoding different costs for various gates (e.g., area) is highly non-trivial
and to the best of our knowledge, is not available in publicly available tools.

This research line area also relates to exact synthesis of combinatorial circuits. Exact
synthesis comprises two different yet connected notions: exact combinatorial optimization
and exact technology mapping. The former is independent of any library or technology and
relies on an assumption which basically defines a criterion to minimize. For instance, in
the case of the academic state-of-the-art synthesis tool ABC [15], this criterion minimizes
the size of the And-Inverter network representing a Boolean function. This can also
be compared to the optimizations performed in [43]. The latter adds the details of the
technology in the optimization process. The objective function to minimize at this stage
generally consists of a trade-off between area and latency of the overall circuits. While the
two optimization steps, first without and then with the technology details, can provide
sufficiently good implementations, we develop in the following the results of our study
when we conduct both steps at the same time.

Table 6: Comparison of 8× 8 MDS matrices over GF(28).

Matrix Implementation Ref.Field/Ring Type Inv. d-XOR(M) s-XOR(M) s-XOR(M−1) Opt Min

GF(28)/0x1c3 Circulant No 30 + 56 24 + 56 104 + 56 X − [32], M8,n,8
GF(28) Circulant No 40 + 56 26 + 56 − − − [10]

GF(28)/0x1c3 Hadamard No 40 + 56 32 + 56 123 + 56 X − [42]
GF(28)/0x11d Circulant No 49 + 56 38 + 56 89 + 56 X − WHIRLPOOL [5]
GF(28)/0x11b Circulant No 83 + 56 63 + 56 107 + 56 − − Grøstl [22]

GF(28)/0x1c3 Hadamard Yes 72 + 56 36 + 56 X − M8,i,8
GF(28)/0x1c3 Hadamard Yes 46 + 56 40 + 56 X − [42]
GF(28)/0x11d Hadamard Yes 98 + 56 73 + 56 − − KHAZAD [7]

Opt: Implementations of coefficients have been optimized under the s-XOR metric.
Min: Lightest possible matrix under field/order/involution.
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6.2 Context of the Comparison
Our main goal is to compare our meet-in-the-middle algorithm MitM to the state-of-
the-art synthesis tools available to the academy and to the industry. By comparing the
output results of both algorithms, we measure the quality of the synthesis in the setting
where area only should be minimized. At the end of this section, we mention different
optimizations scenarios to address other parameters.

We provide comparisons of our algorithms with the academic state-of-the-art logic
synthesis package ABC [15] on two different technologies, namely UMC 180nm [48] and
TMSC 65nm [45]. We emphasize that the choice of standard cell libraries used is almost
irrelevant for our study as we are mainly interested in the quality of the area-optimized
synthesis itself.

To conduct the comparison, we select a few 4-bit permutations that appear in the
literature (see Table 7). In particular, we selected the Sboxes used in the lightweight
block ciphers PICCOLO [41], SKINNY [9], TWINE [44], PRESENT [13], Rectangle [51] and one
of the ten Sboxes present in LBlock [50].

Usual ASIC design can be long and complex, however our work only relates to the
early phase of the process, where RTL code is converted to the gate-level netlist connecting
the actual combinatorial components together to implement the Sbox. The synthesizer
performs this job by running an algorithm that selects and links gates from the library,
while optimizing various criteria like the overall area of the circuit, its delay, etc. In our
experimental comparison, we measure area-only optimization and we restrict our algorithm
to only use a small number of gates, but we allow ABC synthesis tools to use any of
the gates available in the library. Consequently, the results produced by our algorithm
described below can only be improved if more gates are available.

We list the combinatorial gates we use in our experiments in the following Table 8 and
compare their respective area in two different libraries. Most of the selected combinatorial
cells implement classical Boolean operations, whose functional behavior is recalled in
Table 9.

We note that the two operations ANDN and ORN simply invert one of the two inputs
of AND and OR, respectively, while MAOI1 and MOAI1 perform a slightly more complex
operation. These two last 4-input gates are particularly interesting when we replicate their
inputs. Indeed,

MAOI1(a, b, a, b) = ¬((a ∧ b) ∨ (¬(a ∨ b)) = (¬a ∨ ¬b) ∧ (a ∨ b) = XOR(a, b),
MOAI1(a, b, a, b) = ¬((a ∨ b) ∧ (¬(a ∧ b)) = (¬a ∨ b) ∧ (a ∨ ¬b) = XNOR(a, b),

which usually provides a smaller alternative to the 2-input XOR and XNOR gates. Hence,
whenever these cells are available in the library we use, we replace the XOR and XNOR
areas accordingly. We however do not allow our algorithms to use these gates with inputs
of other shapes than (a, b, a, b).

Table 7: Sboxes used for comparison.

Sbox Lookup Table Reference

PICCOLO 14,4,11,2,3,8,0,9,1,10,7,15,6,12,5,13 [41]
SKINNY 12,6,9,0,1,10,2,11,3,8,5,13,4,14,7,15 [9]
TWINE 12,0,15,10,2,11,9,5,8,3,13,7,1,14,6,4 [44]
PRESENT 12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2 [13]
Rectangle 6,5,12,10,1,14,7,9,11,0,3,13,8,15,4,2 [51]
LBlock S0 14,9,15,0,13,4,10,11,1,2,8,3,7,6,12,5 [50]
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Table 8: Comparisons of several standard cell libraries for typical combinatorial cells. The
values are given in GE.

Library Logic NAND
NOT

XOR AND ANDN NAND3 XOR3
MAOI1 MOAI1process NOR XNOR OR ORN NOR3 XNOR3

UMC 180nm 1.00 0.67 3.00 1.33 1.67 1.33 4.67 2.67 2.00
TSMC 65nm 1.00 0.50 3.00 1.50 1.50 1.50 5.50 2.50 2.50

6.3 Comparison with ABC using UMC 180nm Logic Process
We now compare our algorithm to the synthesis performed by ABC configured with the
UMC 180nm library. We tune our algorithms with the costs of the components from
the subset of cells listed in Table 8. In particular, this library provides the two 4-input
cells MAOI1 and MOAI1, so we adapt the cost of XOR and XNOR to 2.67 and 2.00 GE,
respectively. The results are shown in Table 10.

We remark that the PRESENT Sbox is implemented using 28.03 GE using the same UMC
180nm logic process in [13]: our area-optimized implementation therefore saves 6.70 GE
per Sbox, which spares about 100 GE for the round-based implementation. This saving
should however be mitigated since area was the only parameter taken into account in our
synthesis: while this setting is relevant for some applications, it may not for some others,
as in particular, the critical path of this implementation is probably higher than the one
from [13]. We address the notion of tradeoff in Section 6.5.

In the case of PICCOLO, our algorithm finds a circuit with the same structure as
proposed by the designers. However, we note that the NOR/XOR combination mentioned

Table 9: List of Boolean operators implemented by standard cells from the libraries. We
recall that ∧,∨,⊕,¬ respectively stand for: logical and, or, exclusive or, not.

Operation Function Operation Function

NAND (a, b)→ ¬(a ∧ b) XOR (a, b)→ a⊕ b
NOR (a, b)→ ¬(a ∨ b) XNOR (a, b)→ ¬(a⊕ b)
AND (a, b)→ a ∧ b NAND3 (a, b, c)→ ¬(a ∧ b ∧ c)
OR (a, b)→ a ∨ b NOR3 (a, b, c)→ ¬(a ∨ b ∨ c)
NOT a→ ¬a ANDN (a, b)→ ¬a ∧ b
MAOI1 (a, b, c, d)→ ¬((a ∧ b) ∨ (¬(c ∨ d)) ORN (a, b)→ ¬a ∨ b
MOAI1 (a, b, c, d)→ ¬((a ∨ b) ∧ (¬(c ∧ d))

Table 10: Comparison of area-optimized synthesis on the UMC 180nm library.

Sbox UMC 180nm Logic Process
ABC (from LUT) Ours (from LUT) ABC (from ours)

PICCOLO 21.00 GE 13.00 GE −
SKINNY 22.33 GE 13.33 GE −
TWINE 26.33 GE 21.67 GE −
PRESENT 24.33 GE 21.33 GE −
Rectangle 25.33 GE 18.33 GE −
LBlock S0 20.33 GE 16.33 GE −
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Table 11: Comparison of area-optimized synthesis on the TSMC 65nm library.

Sbox TSMC 65nm Logic Process
ABC (from LUT) Ours (from LUT) ABC (from ours)

PICCOLO 18.00 GE 14.00 GE −
SKINNY 20.00 GE 14.00 GE 13.00 GE
TWINE 24.50 GE 25.00 GE 22.50 GE
PRESENT 23.00 GE 24.00 GE 22.50 GE
Rectangle 23.50 GE 21.50 GE 19.00 GE
LBlock S0 19.50 GE 19.00 GE 17.50 GE

in the PICCOLO specifications can be rewritten as an OR/XNOR combination, which saves
some area (3.67 GE vs. 3.33 GE). Indeed, for all x, y, z ∈ GF(2), XOR(NOR(x, y), z) =
XNOR(OR(x, y), z). This allows to reach an implementation of the PICCOLO Sbox with
13 GE using this library.

By affecting the same costs to the implementations given in [43], we reach 22.67 GE
for the Rectangle Sbox and 18.67 GE for the LBlock Sbox. Recall that this is expected
as the optimization performed in this paper simply minimizes the number of gates, and it
is nontrivial to consider their actual area instead, as our tools do.

We give all the implementations produced by our synthesis algorithm for the costs
of the UMC 180nm logic process in Appendix B.1. In all the cases, we have attempted
to launch ABC synthesizer using the full UMC 180nm library on the implementations
produced by our tool: ABC could not reduce the area further.

6.4 Comparison with ABC using TSMC 65nm Logic Process
We now compare our algorithm to the synthesis performed by ABC configured with the
TSMC 65nm library. Again, we adapt the cost of the components to be used by our
algorithms to the subset of cells listed in Table 8. This library also provides MAOI1 and
MOAI1, so we adapt the costs of XOR and XNOR to 2.50 GE each. The results are shown
in Table 11.

Again, the PICCOLO circuit found by our tool is the same as the one proposed by the
designers. In this case, the combined costs of NOR/XOR and OR/XNOR are the same,
which yields an overall implementation that requires 14 GE.

As before, we have used ABC algorithms on the circuits produced by our tool to check
for further improvements. While we restricted our tool to a subset of gates available in
the TSMC library, we let ABC benefit from the full set of cells. In several cases, the joint
use of the two tools allowed to reduced the area (see last column of Table 11).

We give all the implementations produced by our synthesis algorithm for the same
costs as the TSMC 65nm logic process in Appendix B.2, as well as the ones reached after
further optimizations by ABC.

6.5 Synthesis with Area/Delay Tradeoffs
In all this section, we were interested in providing small area-optimized circuits that
implement non-linear Sboxes. While this scenario is of practical interest and was our
optimization strategy throughout this paper, one may also want to optimize for delay
and/or both delay and area. Again, commercial synthesizers do provide these options, but
probably apply general heuristic algorithms regardless of the size of the input function to
optimize.



Jérémy Jean, Thomas Peyrin, Siang Meng Sim and Jade Tourteaux 27

As a rough estimation of the delay, we can count the length of the critical path in terms
of number of gates traversed. For instance, the previous PRESENT Sbox implementation
using 21.33 GE on UMC 180nm logic process has a critical path of length 12, as one output
bit is only available after sequentially evaluating 12 gates. In comparison, the PICCOLO
Sbox implementation using 4 NOR and 4 XNOR/XOR in a Feistel-like structure has a
maximal path of length 4.

The algorithms presented in this paper are very generic and allow to optimize nearly all
aspects of an hardware implementation, including area, delay, area/delay, etc., simply by
affecting the correct costs to some allowed operations. We suggest here a simple heuristic
to tweak the MitM from Section 3.1 to roughly factor in the cell latency. The main
idea consists in affecting a penalty to all the gates trying to read the output of another
gate, which in practice might not be directly available due to delays. As a result, the
implementations outputed are no longer optimal B-implementations, but instead trade
some area for shorter delay.

More precisely, we attach an additional information to all the nodes to represent “when”
the output will be ready, and model this delay as a percentage of the surface of the gate
applied (e.g., 10%) to relate to its combinatorial complexity. Note that this metric relies
on the same unit (GE), hence does not capture perfectly the actual delay of the gates.
Then, to insert a new node in the graph, the Expand algorithm checks whether all the
input values for the instructions are ready, and if not, injects the delay accordingly.

Another approach that we leave out of the paper due to space limitation is delay-only
optimizations, which might be critical in some other particular applications. We however
emphasize once again that the algorithms presented here can be tweaked easily to evaluate
more precisely the latency of the overall constructions.

7 Conclusions and Future Work
In this article, we have described new algorithms and heuristics to generically improve
implementation of lightweight block cipher components such as Sboxes or diffusion matrices.
In practice, our tool, LIGHTER, managed to improve the implementations of many Sboxes
for various technologies, but also to optimize the computation of existing linear layers. We
also present new lightest diffusion matrices that are found through exhaustive search with
early-abort strategies. The tool will be online and free to use after publication. We believe
it will be very useful for cryptographic designers.

There are several future works worth considering. First, it would be interesting to
look at the implementation of a linear diffusion matrix as a whole rather than element by
element. This is challenging in the general case due to the dimension of the problem, but
some heuristics might be able to cut parts of the search space. Similarly, for non-linear
layers, one could try to reach Sboxes sizes larger than 4 bits (a natural target would be
the AES 8-bit Sbox using only heuristics).

Secondly, we believe there are several further applications to our tool that we have
not fully explored yet. For example, improvements of 2- and 3-instructions bit-sliced
software implementations, low-latency implementations, low non-linearity implementations,
delay/area tradeoffs, etc. Besides, enabling more complex gates from the standard cell
libraries would allow our modeling to better fit reality. An additional feature targeting
hardware implementations would be to integrate a notion of distance between wires to
somehow model the place-and-route stage, but this aspect appears to be extremely hard
to incorporate in our current algorithms.

Finally, more results might be obtained by looking at serial diffusion matrices (i.e.
matrices computed as a power of a companion matrix), like the ones used in the PHOTON [24]
hash function or the LED [25] block cipher, since they offer a natural trade-off between
throughput and area.
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A Implementation of Linear Layer
A.1 Implementation of the Field Elements in GF(24)/0x13

1 # define mul2_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
2 x3 = XOR(x3 ,x0); \
3 } while (0); /* Output : (MSB ) x1 ,x2 ,x3 ,x0 ( LSB ) */
4 # define mul3_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
5 x3 = XOR(x3 ,x0); x0 = XOR(x0 ,x1); \
6 x1 = XOR(x1 ,x2); x2 = XOR(x2 ,x3); \
7 } while (0); /* Output : (MSB ) x0 ,x1 ,x2 ,x3 ( LSB ) */
8 # define mul4_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
9 x3 = XOR(x3 ,x0); x0 = XOR(x0 ,x1); \

10 } while (0); /* Output : (MSB ) x2 ,x3 ,x0 ,x1 ( LSB ) */
11 # define mul5_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
12 x2 = XOR(x2 ,x0); x3 = XOR(x3 ,x1); \
13 x1 = XOR(x1 ,x2); x0 = XOR(x0 ,x3); \
14 } while (0); /* Output : (MSB ) x2 ,x0 ,x1 ,x3 ( LSB ) */
15 # define mul6_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
16 x3 = XOR(x3 ,x1); x1 = XOR(x1 ,x0); \
17 x2 = XOR(x2 ,x1); x0 = XOR(x0 ,x2); \
18 x2 = XOR(x2 ,x3); \
19 } while (0); /* Output : (MSB ) x0 ,x2 ,x3 ,x1 ( LSB ) */
20 # define mul7_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
21 x2 = XOR(x2 ,x0); x1 = XOR(x1 ,x2); \
22 x3 = XOR(x3 ,x1); x0 = XOR(x0 ,x3); \
23 x2 = XOR(x2 ,x0); \
24 } while (0); /* Output : (MSB ) x1 ,x3 ,x0 ,x2 ( LSB ) */
25 # define mul8_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
26 x3 = XOR(x3 ,x0); x0 = XOR(x0 ,x1); \
27 x1 = XOR(x1 ,x2); \
28 } while (0); /* Output : (MSB ) x3 ,x0 ,x1 ,x2 ( LSB ) */
29 # define mul9_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
30 x2 = XOR(x2 ,x3); \
31 } while (0); /* Output : (MSB ) x3 ,x0 ,x1 ,x2 ( LSB ) */
32 # define mul10_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
33 x0 = XOR(x0 ,x2); x1 = XOR(x1 ,x0); \
34 x3 = XOR(x3 ,x1); x2 = XOR(x2 ,x3); \
35 } while (0); /* Output : (MSB ) x2 ,x1 ,x3 ,x0 ( LSB ) */
36 # define mul11_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
37 x2 = XOR(x2 ,x0); x1 = XOR(x1 ,x3); \
38 x0 = XOR(x0 ,x1); x3 = XOR(x3 ,x2); \
39 } while (0); /* Output : (MSB ) x1 ,x2 ,x0 ,x3 ( LSB ) */
40 # define mul12_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
41 x0 = XOR(x0 ,x2); x2 = XOR(x2 ,x1); \
42 x1 = XOR(x1 ,x3); x3 = XOR(x3 ,x0); \
43 } while (0); /* Output : (MSB ) x3 ,x1 ,x0 ,x2 ( LSB ) */
44 # define mul13_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
45 x2 = XOR(x2 ,x3); x1 = XOR(x1 ,x2); \
46 } while (0); /* Output : (MSB ) x2 ,x3 ,x0 ,x1 ( LSB ) */
47 # define mul14_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
48 x2 = XOR(x2 ,x3); x1 = XOR(x1 ,x2); \
49 x0 = XOR(x0 ,x1); x3 = XOR(x3 ,x0); \
50 } while (0); /* Output : (MSB ) x0 ,x1 ,x2 ,x3 ( LSB ) */
51 # define mul15_GF16_0x13 (x0 ,x1 ,x2 ,x3) do { \
52 x2 = XOR(x2 ,x3); x1 = XOR(x1 ,x2); \
53 x0 = XOR(x0 ,x1); \
54 } while (0); /* Output : (MSB ) x1 ,x2 ,x3 ,x0 ( LSB ) */

Figure 2: Minimal implementations of GF (16)/0x13 field elements under the s-XOR
metric. The inputs are given as x0,x1,x2,x3, where x0 is the MSB and x3 the LSB.

A.2 Implementation of M4,n,4
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1 /* Bitsliced Implementation of the full matrix M_ {4,n ,4} */
2 # define MixCol_M_4n4 (x0 ,... ,x15 ,y0 ,... , y15) do { \
3 y0 = XOR(x2 ,x3); \
4 y1 = XOR(x1 ,y0); \
5 y2 = XOR(x11 ,x8); \
6 y12 = XOR(XOR(XOR(y0 ,x4),x9),x12); \
7 y13 = XOR(XOR(XOR(x3 ,x5),x10),x13); \
8 y14 = XOR(XOR(XOR(x0 ,x6),y2),x14); \
9 y15 = XOR(XOR(XOR(y1 ,x7),x8),x15); \

10 y0 = XOR(x3 ,x0); \
11 y1 = XOR(x6 ,x7); \
12 y2 = XOR(x5 ,y1); \
13 y8 = XOR(XOR(XOR(x1 ,y1),x8),x12); \
14 y9 = XOR(XOR(XOR(x2 ,x7),x9),x13); \
15 y10 = XOR(XOR(XOR(y0 ,x4),x10),x14); \
16 y11 = XOR(XOR(XOR(x0 ,y2),x11),x15); \
17 y0 = XOR(x7 ,x4); \
18 y1 = XOR(x10 ,x11); \
19 y2 = XOR(x9 ,y1); \
20 y4 = XOR(XOR(XOR(x0 ,x5),y1),x12); \
21 y5 = XOR(XOR(XOR(x1 ,x6),x11),x13); \
22 y6 = XOR(XOR(XOR(x2 ,y0),x8),x14); \
23 y7 = XOR(XOR(XOR(x3 ,x4),y2),x15); \
24 y3 = XOR(x15 ,x12); \
25 y0 = XOR(XOR(XOR(x0 ,x4),x8),x13); \
26 y1 = XOR(XOR(XOR(x1 ,x5),x9),x14); \
27 y2 = XOR(XOR(XOR(x2 ,x6),x10),y3); \
28 y3 = XOR(XOR(XOR(x3 ,x7),x11),x12); \
29 } while (0); /* Output : y0 , y1 , ... , y15 */

Figure 3: Implementation of the matrix M4,n,4. The input vector is stored in
x0,x1,...,x15 and output vector in y0,y1,...,y15 where x0,y0 are the MSB and
x15,y15 the LSB.

B Implementation of Some Sboxes
In this section, we give the implementations of several Sboxes mapped on the two standard
cell libraries used in this paper. We have selected the BLIF format.

B.1 Using UMC 180nm Logic Process

1 . model sbox_piccolo
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate or a=in0 b=in1 O=n9
5 . gate moai1 a=in3 b=n9 c=in3 d=n9 O=out0
6 . gate or a=in1 b=in2 O=n11
7 . gate moai1 a=in0 b=n11 c=in0 d=n11 O=out1
8 . gate nor a=in2 b=out0 O=n13
9 . gate moai1 a=in1 b=n13 c=in1 d=n13 O=out2

10 . gate or a=out0 b=out1 O=n15
11 . gate moai1 a=in2 b=n15 c=in2 d=n15 O=out3
12 .end

Figure 4: Area-optimized hardware implementation of PICCOLO Sbox using 13.00 GE with
the standard cell library of the UMC 180nm logic process.
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1 . model sbox_skinny
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate or a=in0 b=in1 O=n9
5 . gate moai1 a=in3 b=n9 c=in3 d=n9 O=out0
6 . gate or a=in1 b=in2 O=n11
7 . gate moai1 a=in0 b=n11 c=in0 d=n11 O=out1
8 . gate or a=in2 b=out0 O=n13
9 . gate moai1 a=in1 b=n13 c=in1 d=n13 O=out2

10 . gate or a=out0 b=out1 O=n15
11 . gate moai1 a=in2 b=n15 c=in2 d=n15 O=out3
12 .end

Figure 5: Area-optimized hardware implementation of SKINNY Sbox using 13.33 GE with
the standard cell library of the UMC 180nm logic process.

1 . model sbox_twine
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate nor a=in1 b=in2 O=tmp1
5 . gate moai1 a=tmp1 b=in3 c=tmp1 d=in3 O=t1
6 . gate or a=in0 b=t1 O=tmp2
7 . gate moai1 a=tmp2 b=in1 c=tmp2 d=in1 O=t2
8 . gate moai1 a=in2 b=t1 c=in2 d=t1 O=t3
9 . gate moai1 a=t3 b=in0 c=t3 d=in0 O=t4

10 . gate nand3 a=in2 b=t2 c=t4 O=tmp3
11 . gate moai1 a=tmp3 b=t3 c=tmp3 d=t3 O=out0
12 . gate nand a=out0 b=t2 O=tmp4
13 . gate moai1 a=tmp4 b=in2 c=tmp4 d=in2 O=out1
14 . gate moai1 a=t2 b=t4 c=t2 d=t4 O=out2
15 . gate nor a=out1 b=out2 O=tmp5
16 . gate moai1 a=tmp5 b=t2 c=tmp5 d=t2 O=out3
17 .end

Figure 6: Area-optimized hardware implementation of TWINE Sbox using 21.67 GE with
the standard cell library of the UMC 180nm logic process.

1 . model sbox_present
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate or a=in1 b=in3 O=tmp1
5 . gate moai1 a=tmp1 b=in2 c=tmp1 d=in2 O=tmp2
6 . gate nor a=in1 b=tmp2 O=tmp3
7 . gate moai1 a=tmp3 b=in0 c=tmp3 d=in0 O=tmp4
8 . gate moai1 a=tmp4 b=in3 c=tmp4 d=in3 O=tmp5
9 . gate invx a=tmp4 O=tmp6

10 . gate nor a=tmp2 b=tmp6 O=tmp7
11 . gate nor a=tmp7 b=tmp5 O=tmp8
12 . gate moai1 a=tmp8 b=in1 c=tmp8 d=in1 O=out2
13 . gate moai1 a=tmp2 b=tmp5 c=tmp2 d=tmp5 O=out3
14 . gate nor a=out2 b=tmp6 O=tmp9
15 . gate moai1 a=tmp9 b=tmp2 c=tmp9 d=tmp2 O=out1
16 . gate nor3 a=out1 b=out2 c=out3 O= tmp10
17 . gate moai1 a= tmp10 b=tmp6 c= tmp10 d=tmp6 O=out0
18 .end

Figure 7: Area-optimized hardware implementation of PRESENT Sbox using 21.33 GE with
the standard cell library of the UMC 180nm logic process.
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1 . model sbox_lblock
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate nor a=in2 b=in3 O=tmp1
5 . gate moai1 a=tmp1 b=in0 c=tmp1 d=in0 O=tmp2
6 . gate nor a=in1 b=tmp2 O=tmp3
7 . gate moai1 a=tmp3 b=in3 c=tmp3 d=in3 O=tmp4
8 . gate moai1 a=in2 b=in1 c=in2 d=in1 O=tmp5
9 . gate moai1 a=tmp2 b=tmp5 c=tmp2 d=tmp5 O=out3

10 . gate moai1 a=tmp4 b=in2 c=tmp4 d=in2 O=out1
11 . gate and a=out3 b=tmp2 O=tmp6
12 . gate moai1 a=tmp6 b=tmp4 c=tmp6 d=tmp4 O=out2
13 . gate nand a=out3 b=out1 O=tmp7
14 . gate moai1 a=tmp7 b=tmp2 c=tmp7 d=tmp2 O=out0
15 .end

Figure 8: Area-optimized hardware implementation of Rectangle Sbox using 18.33 GE
with the standard cell library of the UMC 180nm logic process.

1 . model sbox_lblock_S0
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate xnor a=in3 b=in2 O=tmp1
5 . gate nand a=in1 b=tmp1 O=tmp2
6 . gate moai1 a=tmp2 b=in3 c=tmp2 d=in3 O=tmp3
7 . gate or a=in0 b=in1 O=tmp4
8 . gate moai1 a=tmp4 b=tmp1 c=tmp4 d=tmp1 O=out3
9 . gate moai1 a=in0 b=tmp3 c=in0 d=tmp3 O=out2

10 . gate nor a=out2 b=out3 O=tmp5
11 . gate moai1 a=tmp5 b=in0 c=tmp5 d=in0 O=out0
12 . gate nand a=out0 b=out2 O=tmp6
13 . gate moai1 a=tmp6 b=in1 c=tmp6 d=in1 O=out1
14 .end

Figure 9: Area-optimized hardware implementation of LBlock S0 Sbox using 16.33 GE
with the standard cell library of the UMC 180nm logic process.
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B.2 Using TSMC 65nm Logic Process

1 . model sbox_piccolo
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate nor a=in0 b=in1 O=n9
5 . gate maoi22 a=in3 b=n9 c=in3 d=n9 O=out0
6 . gate nor a=in1 b=in2 O=n11
7 . gate maoi22 a=in0 b=n11 c=in0 d=n11 O=out1
8 . gate nor a=in2 b=out0 O=n13
9 . gate moai22 a=in1 b=n13 c=in1 d=n13 O=out2

10 . gate nor a=out0 b=out1 O=n15
11 . gate maoi22 a=in2 b=n15 c=in2 d=n15 O=out3
12 .end

Figure 10: Area-optimized hardware implementation of PICCOLO Sbox using 14.00 GE
with the standard cell library of the TSMC 65nm logic process.

1 . model sbox_skinny_opt_tsmc_1400
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate nor a=in0 b=in1 O=n9
5 . gate maoi22 a=in3 b=n9 c=in3 d=n9 O=out0
6 . gate nor a=in1 b=in2 O=n11
7 . gate maoi22 a=in0 b=n11 c=in0 d=n11 O=out1
8 . gate nor a=in2 b=out0 O=n13
9 . gate maoi22 a=in1 b=n13 c=in1 d=n13 O=out2

10 . gate nor a=out0 b=out1 O=n15
11 . gate maoi22 a=in2 b=n15 c=in2 d=n15 O=out3
12 .end

Figure 11: Area-optimized hardware implementation of SKINNY Sbox using 14.00 GE with
the standard cell library of the TSMC 65nm logic process.

1 . model sbox_twine
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate invx a=in2 O=tmp1
5 . gate nor a=in3 b=tmp1 O=tmp2
6 . gate nor a=tmp2 b=in0 O=tmp3
7 . gate maoi22 a=tmp3 b=in1 c=tmp3 d=in1 O=tmp4
8 . gate nand a=tmp1 b=in3 O=tmp5
9 . gate nand a=tmp5 b=tmp4 O=tmp6

10 . gate moai22 a=tmp6 b=in0 c=tmp6 d=in0 O=tmp7
11 . gate nand a=tmp7 b=tmp4 O=tmp8
12 . gate maoi22 a=tmp8 b=tmp1 c=tmp8 d=tmp1 O=out1
13 . gate nor a=in3 b=out1 O=tmp9
14 . gate maoi22 a=tmp9 b=tmp4 c=tmp9 d=tmp4 O= tmp10
15 . gate nor a=out1 b= tmp10 O= tmp11
16 . gate nor a= tmp11 b=tmp7 O= tmp12
17 . gate maoi22 a= tmp12 b=in3 c= tmp12 d=in3 O=out2
18 . gate invx a= tmp10 O=out3
19 . gate nand a=out3 b=out2 O= tmp13
20 . gate moai22 a= tmp13 b=tmp7 c= tmp13 d=tmp7 O=out0
21 .end

Figure 12: Area-optimized hardware implementation of TWINE Sbox using 25 GE with the
standard cell library of the TSMC 65nm logic process.
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1 . model sbox_present
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate nor a=in1 b=in3 O=tmp1
5 . gate maoi22 a=tmp1 b=in2 c=tmp1 d=in2 O=tmp2
6 . gate nor a=in1 b=tmp2 O=tmp3
7 . gate maoi22 a=tmp3 b=in0 c=tmp3 d=in0 O=tmp4
8 . gate maoi22 a=tmp4 b=in3 c=tmp4 d=in3 O=tmp5
9 . gate nor a=tmp2 b=tmp4 O=tmp6

10 . gate nor a=tmp6 b=tmp5 O=tmp7
11 . gate moai22 a=tmp7 b=in1 c=tmp7 d=in1 O=out2
12 . gate moai22 a=tmp2 b=tmp5 c=tmp2 d=tmp5 O=out3
13 . gate nor a=out2 b=tmp4 O=tmp8
14 . gate moai22 a=tmp8 b=tmp2 c=tmp8 d=tmp2 O=out1
15 . gate nor3 a=out2 b=out1 c=out3 O=tmp9
16 . gate moai22 a=tmp9 b=tmp4 c=tmp9 d=tmp4 O=out0
17 .end

Figure 13: Area-optimized hardware implementation of PRESENT Sbox using 24.00 GE
with the standard cell library of the TSMC 65nm logic process.

1 . model sbox_rectangle
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate nor a=in2 b=in3 tmp1
5 . gate maoi22 a=tmp1 b=in0 c=tmp1 d=in0 O=tmp2
6 . gate maoi22 a=tmp2 b=in1 c=tmp2 d=in1 O=tmp3
7 . gate nor a=in2 b=tmp2 O=tmp4
8 . gate moai22 a=tmp4 b=in3 c=tmp4 d=in3 O=tmp5
9 . gate moai22 a=tmp3 b=in2 c=tmp3 d=in2 O=out3

10 . gate moai22 a=tmp5 b=tmp3 c=tmp5 d=tmp3 O=out2
11 . gate nand a=tmp2 b=out3 O=tmp6
12 . gate moai22 a=tmp6 b=tmp5 c=tmp6 d=tmp5 O=out1
13 . gate nand a=out1 b=out3 O=tmp7
14 . gate maoi22 a=tmp7 b=tmp2 c=tmp7 d=tmp2 O=out0
15 .end

Figure 14: Area-optimized hardware implementation of Rectangle Sbox using 21.50 GE
with the standard cell library of the TSMC 65nm logic process.

1 . model sbox_lblock
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate nor a=in0 b=in1 O=tmp1
5 . gate moai22 a=tmp1 b=in2 c=tmp1 d=in2 O=tmp2
6 . gate maoi22 a=in3 b=tmp2 c=in3 d=tmp2 O=out3
7 . gate nand a=in1 b=out3 O=tmp3
8 . gate moai22 a=tmp3 b=in3 c=tmp3 d=in3 O=tmp4
9 . gate nor a=in0 b=tmp4 O=tmp5

10 . gate maoi22 a=tmp5 b=in1 c=tmp5 d=in1 O=out1
11 . gate moai22 a=in0 b=tmp4 c=in0 d=tmp4 O=out2
12 . gate nor a=out3 b=out2 O=tmp6
13 . gate moai22 a=tmp6 b=in0 c=tmp6 d=in0 O=out0
14 .end

Figure 15: Area-optimized hardware implementation of LBlock S0 Sbox using 19 GE with
the standard cell library of the TSMC 65nm logic process.
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1 . model sbox_skinny
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate nor a=in0 b=in1 O=n9
5 . gate iao22 a=in3 b=n9 c=in3 d=n9 O=out0
6 . gate nor a=in1 b=in2 O=n11
7 . gate iao22 a=in0 b=n11 c=in0 d=n11 O=out1
8 . gate nor a=in2 b=out0 O=n13
9 . gate iao22 a=in1 b=n13 c=in1 d=n13 O=out2

10 . gate or a=out0 b=out1 O=n15
11 . gate invx a=n15 O=n16
12 . gate iao22 a=in2 b=n16 c=in2 d=n16 O=out3
13 .end

Figure 16: Combination of LIGHTER and ABC: Area-optimized hardware implementation
of SKINNY Sbox using 13.00 GE with the standard cell library of the TSMC 65nm logic
process.

1 . model sbox_twine
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate invx a=in2 O=n9
5 . gate invx a=in3 O=n10
6 . gate aoi21 a=in2 b=n10 c=in0 O=n11
7 . gate iao22 a=in1 b=n11 c=in1 d=n11 O=n12
8 . gate oai21 a=in2 b=n10 c=n12 O=n13
9 . gate moai22 a=in0 b=n13 c=in0 d=n13 O=n14

10 . gate nand a=n12 b=n14 O=n15
11 . gate iao22 a=n9 b=n15 c=n9 d=n15 O=out1
12 . gate invx a=out1 O=n17
13 . gate nor a=in3 b=out1 O=n18
14 . gate moai22 a=n12 b=n18 c=n12 d=n18 O=out3
15 . gate aoi21 a=n17 b=out3 c=n14 O=n20
16 . gate iao22 a=in3 b=n20 c=in3 d=n20 O=out2
17 . gate nand a=out3 b=out2 O=n22
18 . gate moai22 a=n14 b=n22 c=n14 d=n22 O=out0
19 .end

Figure 17: Combination of LIGHTER and ABC: Area-optimized hardware implementation
of TWINE Sbox using 22.50 GE with the standard cell library of the TSMC 65nm logic
process.

1 . model sbox_present
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate nor a=in1 b=in3 O=n9
5 . gate iao22 a=in2 b=n9 c=in2 d=n9 O=n10
6 . gate nor a=in1 b=n10 O=n11
7 . gate iao22 a=in0 b=n11 c=in0 d=n11 O=n12
8 . gate iao22 a=in3 b=n12 c=in3 d=n12 O=n13
9 . gate iao21 a=n10 b=n12 c=n13 O=n14

10 . gate moai22 a=in1 b=n14 c=in1 d=n14 O=out2
11 . gate nor a=n12 b=out2 O=n16
12 . gate moai22 a=n10 b=n16 c=n10 d=n16 O=out1
13 . gate moai22 a=n10 b=n13 c=n10 d=n13 O=out3
14 . gate nor3 a=out2 b=out3 c=out1 O=n19
15 . gate moai22 a=n12 b=n19 c=n12 d=n19 O=out0
16 .end

Figure 18: Combination of LIGHTER and ABC: Area-optimized hardware implementation
of PRESENT Sbox using 22.50 GE with the standard cell library of the TSMC 65nm logic
process.
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1 . model sbox_rectangle
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate invx a=in2 O=n9
5 . gate nor a=in2 b=in3 O=n10
6 . gate iao22 a=in0 b=n10 c=in0 d=n10 O=n11
7 . gate iao22 a=in1 b=n11 c=in1 d=n11 O=n12
8 . gate invx a=n12 O=n13
9 . gate oai22 a=in2 b=n12 c=n9 d=n13 O=out3

10 . gate invx a=out3 O=n15
11 . gate oai22 a=in0 b=in2 c=n9 d=in3 O=n16
12 . gate invx a=n16 O=n17
13 . gate iao22 a=n15 b=n17 c=n11 d=n15 O=out0
14 . gate nand a=n11 b=out3 O=n19
15 . gate invx a=n19 O=n20
16 . gate ao22 a=n16 b=n19 c=in3 d=n20 O=out1
17 . gate oai22 a=n13 b=n17 c=n12 d=n16 O=out2
18 .end

Figure 19: Combination of LIGHTER and ABC: Area-optimized hardware implementation
of Rectangle Sbox using 19.00 GE with the standard cell library of the TSMC 65nm logic
process.

1 . model sbox_lblock_S0
2 . inputs in0 in1 in2 in3
3 . outputs out0 out1 out2 out3
4 . gate invx a=in0 O=n9
5 . gate nor a=in0 b=in1 O=n10
6 . gate nand a=in2 b=n10 O=n11
7 . gate oai21 a=in2 b=n10 c=n11 O=n12
8 . gate iao22 a=in3 b=n12 c=in3 d=n12 O=out3
9 . gate nand a=in1 b=out3 O=n14

10 . gate iao22 a=in3 b=n14 c=in3 d=n14 O=n15
11 . gate nand a=n9 b=n15 O=n16
12 . gate invx a=n16 O=n17
13 . gate oai21 a=n9 b=n15 c=n16 O=out2
14 . gate nor a=out3 b=out2 O=n19
15 . gate moai22 a=in0 b=n19 c=in0 d=n19 O=out0
16 . gate iao22 a=in1 b=n17 c=in1 d=n17 O=out1
17 .end

Figure 20: Combination of LIGHTER and ABC: Area-optimized hardware implementation
of LBlock Sbox S0 using 17.50 GE with the standard cell library of the TSMC 65nm logic
process.
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