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Abstract. This paper presents a cryptanalysis of full Kravatte, an instantiation of
the Farfalle construction of a pseudorandom function (PRF) with variable input
and output length. This new construction, proposed by Bertoni et al., introduces
an efficiently parallelizable and extremely versatile building block for the design of
symmetric mechanisms, e.g. message authentication codes or stream ciphers. It relies
on a set of permutations and on so-called rolling functions: it can be split into a
compression layer followed by a two-step expansion layer. The key is expanded and
used to mask the inputs and outputs of the construction. Kravatte instantiates
Farfalle using linear rolling functions and permutations obtained by iterating the
Keccak round function.
We develop in this paper several attacks against this PRF, based on three different
attack strategies that bypass part of the construction and target a reduced number of
permutation rounds. A higher order differential distinguisher exploits the possibility
to build an affine space of values in the cipher state after the compression layer.
An algebraic meet-in-the-middle attack can be mounted on the second step of the
expansion layer. Finally, due to the linearity of the rolling function and the low
algebraic degree of the Keccak round function, a linear recurrence distinguisher can be
found on intermediate states of the second step of the expansion layer. All the attacks
rely on the ability to invert a small number of the final rounds of the construction.
In particular, the last two rounds of the construction together with the final masking
by the key can be algebraically inverted, which allows to recover the key.
The complexities of the attacks devised are far below the security claimed for the
latest published Kravatte specifications published on the IACR ePrint and for a
strengthened version of Kravatte that has been recently presented at ECC 2017.
Keywords: Cryptanalysis · Higher Order Differential · Algebraic Attack · Linearization

1 Introduction
Farfalle is an efficiently parallelizable permutation-based construction of a variable
input and output length pseudorandom function (PRF) recently proposed by Bertoni
et al. [BDH+16]. It represents an extremely versatile building block for the design of
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2 Key-Recovery Attacks on Full Kravatte

symmetric mechanisms. It can indeed be used either directly as a message authentication
code (MAC), as the keystream generation part of a stream cipher, as a key derivation
function (KDF), or otherwise in a mode of operation allowing to convert it into a more
complex mechanism, for instance an authenticated encryption scheme or a block cipher of
variable block length.

Farfalle takes as input a key and a (sequence of) data string(s) of arbitrary length(s)
and produces an output of arbitrary length. Its construction involves two basic ingredients:
a set of permutations of a b-bit state, and a family of so-called rolling functions used to
derive distinct b-bit mask values from a b-bit mask key or more generally b-bit variants of
a b-bit state.

The Farfalle construction consists of a compression layer followed by an expansion
layer. The compression layer produces a single b-bit accumulator value from a tuple of
b-bit blocks representing the input data. The expansion layer first non-linearly transforms
the accumulator value into a b-bit rolling state and then non-linearly transforms a tuple
of variants of this rolling state, produced by iterating the rolling function into a tuple of
(truncated) b-bit output blocks. Both the compression and the expansion layer involve
b-bit mask values derived from the key by the key derivation part of the construction.

An efficient instantiation of the Farfalle construction named Kravatte is also
specified in [BDH+16, version 20170717:134002]. It is depicted in Figure 1. The underlying
components are a set of Keccak-p permutations of a b = 1600-bit state, and a family of
simple F2-linear rolling functions. The variants of Kravatte are addressed according to
the number of rounds in the internal permutations: nb rounds for the key derivation, nc
rounds for the compression layer, nd rounds for the non-linear transformation applied of
the accumulator, and ne rounds for the expansion layer. The specifications of Kravatte
published on the IACR ePrint in July 2017 use (nb, nc, nd, ne) = (6, 6, 4, 4) and an
announcement at ECC 2017 of a strengthened variant [BDH+17b] uses (nb, nc, nd, ne) =
(6, 6, 6, 6).

Our Contributions

In this paper, we present three families of attacks against full Kravatte, whose time and
data complexities are far below the security claimed by the designers. Furthermore, one of
them can even be successfully applied to strengthened variants of Kravatte.

The first two attack strategies focus on the expansion layer after the application of
its initial non-linear transformation. They exploit that all output blocks are generated
from the same initial rolling state, and the small number of Keccak-p rounds between the
rolling state diversification and the block outputs. They require a long Kravatte output
generated from a single and possibly unknown message. The compression layer and the
derivation of the rolling state from the accumulator value do not contribute any security
against these attacks. The third strategy focuses on a property of the compression layer.

Meet-in-the-Middle Algebraic Attack. The first attack can be seen as a meet-in-the-
middle (MITM) algebraic attack, and bears some resemblance to the meet-in-the-middle
approach applied to interpolation attacks [JK97]. The rolling state and the output masking
key are the unknowns of an algebraic system built by forming expressions of the same
intermediate state, either by forward computation from the rolling state, or by backward
computation from the output. The expansion mechanism makes it possible to collect
enough equations to solve the system by linearization.

Linear Recurrence Distinguisher. The second attack strategy leverages the linear branch
diversification mechanism of the expansion layer: the rolling state can be assimilated to
a short LFSR state, due to the restriction of the rolling function to only 320 bits of the
1600-bit state. As a consequence, the linear complexity of the sequence of blocks obtained
by application to consecutive rolling state values of a small number of the low-degree
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Keccak round function is also limited, i.e., this sequence satisfies a linear recurrence of
order far smaller than what is expected from the size of the state. Furthermore, the
recurrence polynomial of this sequence of blocks can be derived at a moderate cost. This
observation provides the linear recurrence distinguisher used in our attack.

Higher Order Differential Distinguisher. The last attack strategy is essentially a higher
order differential distinguisher. First, the compression layer of Farfalle produces an
accumulator state equal to the exclusive or of non-linear permutations of the b-bit blocks
representing the input data. This property allows the compression layer to satisfy the
design requirements of being efficiently parallelizable and incremental.1 However, it also
allows an adversary to construct simple structures of 2n n-block input values whose images
by the compression layer form an affine subspace of dimension n of {0, 1}b.

Moreover, Kravatte relies on the Keccak-p permutation, whose round function has an
algebraic degree only two and the rolling function is F2-linear. Therefore, if we denote by
r the number of Keccak-p rounds of the partial computation —on input the accumulator
state and up to ε final Keccak-p rounds— of any of the output blocks of the expansion
layer, the algebraic degree of this partial expansion is upper bounded by 2r. This implies
that if n > 2r, the sum of the outputs of this partial expansion over the accumulator values
associated with one of the structures mentioned above is equal to zero. This observation
provides the higher order differential distinguisher used in our attack.

Last Round Attacks. The attacks all rely on the capacity to “invert” up to two of the
last rounds of the expansion layer despite a final masking of the output values by a key
block. This can be done algebraically, by expressing the intermediate values as a function
of the Kravatte output block and of the unknown key block, setting up a system of
multivariate polynomial equations, and solving this system by linearization. Surprisingly,
this is more efficient than expected from the algebraic degree of the inverse of the last
rounds due to the limited diffusion in a small number of iterations of the inverse round
function of Keccak.

This notably offers the possibility to leverage distinguishers on partial versions of
Kravatte, and then mount key-recovery attacks on the full primitive. We give in Table 1
a list of the key-recovery attacks that are described in the rest of the paper.

Optimizations. Various technical improvements can be applied to the attack strategies
in order to optimize the time, memory, or data complexity. We already note that some
of these techniques improve some of the complexities but downgrade some others, which
makes the selection of improvements a trade-off process. We discuss these optimizations in
a dedicated section (Section 5) after the presentation of the attack strategies.

Organization. We give a description of Kravatte in Section 2, an instantiation of the
Farfalle construction. In Section 3, we describe a MITM algebraic attack and an attack
based on the linear recurrence distinguisher of Kravatte partial expansion layer. Both
attack strategies focus on the expansion layer of Kravatte. In Section 4, we describe
a higher order differential attack on Kravatte. In Section 5, we describe technical
optimizations that can be applied to the attack strategies in order to improve their
complexities, and provide a selection of attacks optimized either for time, memory or data
complexity. Finally, we discuss in Section 6 the insights gained from these attacks.

2 Specifications of Farfalle and Kravatte
In this section, we give a description of permutation-based mode Farfalle and its original
instantiation Kravatte, which is based on the permutation used in Keccak [BDPA11,

1Incremental means that if two input data share the same prefix, their compression layer computations
can be partly shared.
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Table 1: Key-recovery attacks against Kravatte instantiations for several (nd, ne) values.
All attacks are independent of nb and nc, and ? means that nd can take any value. The
reference points to the section describing the attack type. The complexity figures are
obtained after the selection of optimizations described in Section 5.

(nd,ne) Type Data Memory Time Reference
blocks bits elementary op.

(4, 4) Higher Order 274.7 262.3 2112.2 Section 4
(?, 4) MITM 227.8 276.9 2115.3 Section 3.1
(?, 4) Linear Recurrence 251.2 251.2 265.1 Section 3.2
(?, 4) Linear Recurrence 229.9 262.3 287.0 Section 3.2
(?, 6) Linear Recurrence 288.4 288.4 2134.6 Section 3.2

NIS14]. The two primitives Farfalle and Kravatte have both been designed by Bertoni
et al., originally published on the IACR ePrint in [BDH+16], and strengthened versions
have been accepted at ToSC and will be presented at the FSE 2018 conference [BDH+17a].

2.1 The Farfalle Construction for Permutation-Based PRFs
Kravatte is a permutation-based variable input and output length pseudo-random
function. It takes as input a key and a sequence of bit strings, and returns an arbitrary-
length output. It relies on the Farfalle construction, which allows to build a PRF from
parallel applications of fixed permutations. In this article and without loss of generality, we
focus on input sequences that contain only one bit string, while the general construction
allows for vectors of bit strings. Throughout this paper, the exclusive or of bits or b-bit
blocks is denoted additively by “+”.

Farfalle makes use of four permutations (possibly identical or related), denoted pb,
pc, pd and pe of a b-bit block. Its instantiation requires the definition of three so-called
rolling functions, denoted rollc, rolle and rollf . These functions should ensure that for an
unknown value x, an adversary cannot predict the value of any number of iterations of the
rolling functions rolli(x), nor the value of rolli(x) + rollj(x) for i 6= j.

The Farfalle construction takes as input a key K and a message M . For an `i-block
input message and a `o-block output, Farfalle consists of the three following steps:

Mask derivation: The keyK is padded into a b-bit stringK‖10∗, on which the permutation
pb is applied and yields kin = pb(K‖10∗). Denoting kout = roll`i+1

c (kin), `i+`j masks
are then computed as kini = rollic(kin) for i = 0, . . . , `i − 1, and koutj = rolljf (kout)
for j = 0, . . . , `o − 1.

Compression layer: The message M is padded into a `i sequence of b-bit blocks mi,
by appending a 1-bit and a sequence of 0-bits. Then, one compresses these data
into a single b-bit block accumulator x, by XOR-ing a key mask to each block,
applying the permutation pc to the results, and XOR-ing all the results together:
Acc(M) =

∑
i pc
(
mi + kini

)
.

Expansion layer: In a first step, the permutation pd is applied on the accumulator to get
y = pd(Acc(M)). Then, in a second step, `o output blocks zj are computed from
this value by applying consecutively a rolling function, the permutation pe, and an
XOR with the key mask koutj : namely, zj = pe

(
rollje(y)

)
+ koutj for j = 0, . . . , `o − 1.

The output of Farfalle is the concatenation of bit strings z0‖ · · · ‖z`o−1.
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2.2 The Kravatte Pseudo-Random Function
Kravatte is an instantiation of the Farfalle construction, which specifies the internal
components. The Figure 1 outlines the overall primitive that relies on four different
Keccak-p permutations [NIS14] on a block size of b = 1600 bits. The only distinction
between those four permutations named pb, pc, pd and pe lies in their number of rounds,
that we denote respectively by nb, nc, nd and ne.

Since the first publication, the designers substantially changed the construction of
Farfalle and Kravatte, and as of the latest Kravatte specification [BDH+16], the
permutations pb and pc consist of nb = nc = 6 rounds of the Keccak-p permutation,
while the remaining two permutations contain nd = ne = 4 rounds. In a private commu-
nication,2 upon discovery of the higher order differential attack described in Section 4,
the designers considered increasing the numbers of rounds to (nb, nc, nd, ne) = (6, 6, 6, 6).
The resulting updated version has been presented by the designers at the ECC 2017
conference [BDH+17b].

To conveniently address the various versions throughout the paper, we use the notation
Kravatte-(nd, ne) to refer to a version with specific nd (resp. ne) number of rounds in
the permutation pd (resp. pe). Our results are independent of pb and pc, which is why we
do not mention nb and nc.

Like in Keccak, the 1600-bit state is represented as a 5 × 5 × 64 three-dimensional
bit array B, where each bit is denoted Bx,y,z, with x, y = 0, . . . , 4 and z = 0, . . . , 63.
Arithmetic operations performed on indices x, y and z are reduced modulo 5, 5 and 64,
respectively, and we omit the modulo for the sake of simplicity.

Additionally, while Farfalle uses several rolling functions, Kravatte only relies on
one, that we simply denote by roll, and whose n-th iteration is depicted as n on Figure 1.
More precisely, rollb = rollc = rolld = roll and rolle is the identity. The roll function
transforms a state A into B = roll(A) as follows:

Bx,y,z ← Ax,y,z if y < 4,
Bx,4,z ← Ax+1,4,z if x < 4,
B4,4,z ← A0,4,z−7 +A1,4,z if z > 60,
B4,4,z ← A0,4,z−7 +A1,4,z +A1,4,z+3 if z ≤ 60.

Security Claims. In the original document, the designers of Kravatte claim a security
of 256 bits when the amount of data does not exceed 2137 input and output blocks, that is
`i + `o ≤ 2137.

2.3 Round Function of the Keccak-p Permutation
We now give a brief description of the Keccak-p permutation, which can also be found
in [NIS14]. It is based on the iteration of a round function, defined as the composition of
the following operations (in this order), that each produce a state A′ from A:

Linear Diffusion θ: The sum of the five bits of columns with indices (x− 1, z) and (x+
1, z − 1) are added to bit each bit (x, y, z) of the state:

A′x,y,z ← Ax,y,z +
4∑
j=0

Ax−1,j,z +
4∑
j=0

Ax+1,j,z−1.

Lane-Wise Rotation ρ: Each lane of the state is rotated by a different number of positions,
whose exact values are not relevant for the description of the attacks.

2November 5, 2017.
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K||10∗ pb

`i+1

pd
Acc(M) y

pc

0 kin

m0 0 pe

kout

z0
y0

pc

1 kin

m1 1 pe

kout

z1
y1

pc

`i−1 kin

m`i−1 `o−1 pe

kout

z`o−1
y`o−1

· · · · · ·

M

Figure 1: The Kravatte primitive. The input message M is padded and split into the
b-bit blocks mi. The function n refers to the linear function x→ rolln(x).

Lane-Preserving Permutation π: Lanes positions are switched according to a constant
pattern: A′x,y,z ← Ax+3y,x,z

Substitution Layer χ: A 5-bit Sbox of degree two is computed on each row (y, z) of the
state. More specifically, each output bit depends on three input bits by the following
equation (omitting y and z indices):

A′x ← Ax +Ax+1 ·Ax+2.

Constant Addition ι: A round constant produced by an LFSR is XOR-ed to the lane
indexed by (0, 0). We omit the exact values of the constants, as they are not relevant
to understand the paper. We refer the interested reader to [NIS14] for more details.

In the remaining of the paper, we also use the inverse of the Keccak-p round function,
obtained by inverting the sequence of operations. The transformations ι, ρ and π all have
straightforward inverses. The inverse Sbox χ−1 has algebraic degree three, and omitting y
and z indices, its polynomial expression is given by

A′x ← Ax+1 ·Ax+3 ·Ax+4 +Ax+1 ·Ax+2 +Ax.

The transformation θ−1 is a high-density linear layer whose exact expression is not relevant
for the analysis conducted in the paper. It consists in XOR-ing to each bit of the state the
sum of all five bits of about half of the columns of the state, and we note that, for a given
column, the value XOR-ed to all the five positions is the same.

3 Algebraic Cryptanalysis of Full Kravatte
In this section, we describe key-recovery algebraic attacks against Kravatte-(nd, ne)
for any nd and ne ∈ {4, 6} and for a single message. These attacks rely on a remark
on the linearization of the algebraic systems describing iterated Keccak-p−1 rounds, on
the structure of the expansion layer in the Kravatte construction, and on the small
number ne of Keccak-p rounds in the pe permutation. We note that these attacks are
entirely independent of the compression layer of Kravatte as well as the application of pd
on the accumulator that initiates the expansion layer.
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y

0 Keccak-pn1 Keccak-p−n2

kout

z0
y0

1 Keccak-pn1 Keccak-p−n2

kout

z1
y1

`o−1 Keccak-pn1 Keccak-p−n2

kout

z`o−1

y`o−1
...

A-states = B-states

Figure 2: Meet-in-the-middle algebraic attack on Kravatte, with n1 forward and n2
backward rounds, n1 + n2 = ne.

We first describe an attack based on a meet-in-the-middle strategy (Section 3.1), which
can be enhanced by an observation borrowed from stream-cipher cryptanalysis (Section 3.2).
This last technique can be further improved by refining the study of the linearization of
iterated Keccak-p−1 rounds, which is covered in Section 5.

3.1 Meet-in-the-Middle Algebraic Attack
We present a key-recovery meet-in-the-middle (MITM) algebraic attack on full Kravatte.
The key observation underlying the attack is that the same unknown value at the output
of pd is used at the input of all the branches in the expansion phase. If we denote this
value by y, then the j-th output block becomes zj = pe(rollj(y)) + kout. By considering a
system of equations where the unknowns are bits of both kout and of y, we can mount
a meet-in-the-middle attack by equating two states for Branch j: Aj = Bj , where Aj
corresponds to n1 forward rounds of Keccak-p applied on yj = rollj(y), and Bj to n2
backward rounds of Keccak-p applied on zj+kout, with n1 +n2 = ne. The A-states contain
expressions in y and can be precomputed, while the B-states contain output-dependent
expressions in kout. By considering a single input message (possibly unknown) together
with its `o-block output, for `o sufficiently large, we can collect enough equations to form
a system that can be solved through linearization, which recovers kout.

Linearization Principle. Linearization is a well-known technique to solve multivariate
polynomial systems of equations. It relies on a fairly simple idea: the system of polynomial
equations is turned into a system of linear equations by adding new variables that replace
all the monomials of the system whose degree is strictly greater than 1. This linear system
of equations can be solved using linear algebra if there are enough equations to make the
linearized system overdetermined, typically at least on the same order as the number of
variables after linearization. All the attacks from the paper heavily rely on this technique.

In the case of the MITM algebraic attack on Kravatte, the middle state can be
described as a polynomial expression in y bits (resp. kout bits) in the forward (resp.
backward) direction. By linearization and summation of both expressions, one gets a linear
equation in y and kout monomials, with no composite monomial involving both types of
unknowns.

Basic Linearization. The most straightforward way to linearize algebraic expressions in n
unknowns of degree limited by d is to introduce a new variable for every monomial in the
unknowns of degree at most d. The set of monomials considered has cardinality

S(n, d) def=
d∑
i=1

(
n

i

)
.

This approach can be used directly in the context of the MITM algebraic attack on
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Table 2: Number of monomials in input (resp. output) variables after n rounds of Keccak-p
or Keccak-p−1 for b = 1600 (log2 scale).

n Keccak-p Keccak-p−1

Basic Improved

1 20.3 29.3 13.0
2 38.0 77.3 36.5 [Jean-

René: I get
36.3]

3 69.8 194.0 106.4

Kravatte. The algebraic degree of Keccak-p (resp. Keccak-p−1) is two (resp. three)
and roll is linear, thus the number of monomials involved by a basic linearization is
approximately S(b, 2n1) + S(b, 3n2). We give in Table 2 the number of monomials required
to describe the forward and backward parts of the meet-in-the-middle algebraic system.

Improved Linearization in the Backward Direction The number of monomials to consider
in the backward direction can be drastically reduced if we take into account the row
structure of χ−1 non-linear layers and the absence of diffusion before the first χ−1 layer
encountered. Indeed, through the backward computations, new monomials are only created
in χ−1 layers through multiplicative combination of input sum of monomials. There are
two limiting factors to the combination power of the χ−1 layers. First, the χ−1 has only
degree three, restricting the newly created monomials to the product of at most three input
monomials. Secondly, it operates on only five inputs, which has a significant effect since
input monomials for the external χ−1 layer can be limited by position: as no diffusion takes
places after the unmasking by kout, only five kout bit variables can occur in the monomials
occurring at the output of a given Sbox. Consequently, the number of monomials required
to express the outputs of an Sbox is upper bounded by S(5, 3), so that expressing the
outputs of all Sboxes only requires N = b

5S(5, 3) monomials. The input bits of internal χ−1

layers have undergone linear diffusion, so they cannot be restricted in the same manner.
However, the degree limitation still applies, and since N monomials can be used to describe
the polynomial expressions of all bits before the χ−1 layer, the number of monomials that
appear in the output bits of this layers is upper-bounded by S(N, 3). This can be iterated
to cover more rounds. Note that the improved linearization does not apply in the forward
direction due to the application of roll and θ prior to the first χ layer. We give in Table 2
estimates for the number of monomials to consider for a small number of Keccak-p rounds
in the backward direction.

For ne = 4, choosing n1 = n2 = 2, Kravatte can be attacked by a meet-in-the-middle
algebraic attack. The attack requires 1

1600 (238.0 + 236.5) ≈ 227.8 output blocks to get
enough equations, has memory complexity (238.0 + 236.5)2 ≈ 276.9 bits to represent the
system and the time for the resolution of the linearized system is at most cubic in the
number of monomials, which yields about (238.0 + 236.5)3 ≈ 2115.3 elementary operations.

The time complexity to build the system boils down to the construction of the 227.8

equations, where each requires to compute the expressions coming from both sides of
the meet-in-the-middle. For one equation, the backward contribution is dominated by
the product of three polynomials in 320S(5, 3) = 8000 monomials, while the forward
contribution is dominated by the multiplication of two polynomials of at most S(1600, 2) ≈
220.29 monomials in y. All in all, the time complexity is dominated by the time for solving
the system.

The above observations about how to linearize the backward computation of up to two
last rounds of Keccak-p and the results of Table 2 will be re-used in the key-recovery part
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of the attacks introduced in Section 3.2 and Section 4.

3.2 Cancellation of Monomials Using a Linear Recurrence
We now describe a second attack that exploits the linearity of the rolling function to cancel
the monomials in y from the system. Indeed, after the application of pd, the first half of
the remaining expansion layer can be seen as a filtered linear recurrent sequence of states,
with update function roll and output function Keccak-pn1 . Filtered linear recurrences, e.g.
filtered LFSR, are classic stream cipher constructions, which have been deeply studied. A
line of work [Key76,RH07,RGH07] observes that not only do the LFSR state bits follow
linear recurrences, but the same holds for the monomials that are formed from these bits.

In this section, we start by exposing a recurrence polynomial of sequences of values
taken by bits of the rolling state. We then show how this can be generalized to obtain a
recurrence polynomial for sequence of values taken by products of bits of the rolling state.
As the state Aj can be expressed as a sum of such products of yj bits, this constitutes a
linear complexity distinguisher on partial Kravatte, with the last n2 Keccak-p rounds
and final masking removed. Finally, we show this can be used to combine equations of the
system describing the expansion phase of Kravatte to eliminate the monomials in y.

Linear Recurrence of Rolling State Bits. As stated above, the beginning of the expansion
layers acts like a LFSR filtered by the fixed non-linear function Keccak-pn1 . After the
initial value y = pd(Acc(M)) of the rolling state is formed, it is updated linearly through
the rolling function roll: the value of the rolling state that appears at the start of Branch j
is given by yj = rollj(y). The rolling function roll is a linear transformation of the rolling
state that leaves Planes 0 to 3 unchanged. The matrix Mroll of size 320 describing how
roll affects Plane 4 has a primitive characteristic polynomial Proll of degree 320.3 By
the Cayley-Hamilton theorem, we know that Proll(Mroll) = 0. We can associate to Bit i
of Plane 4 a vector ei of the standard basis of F320

2 , and the values taken by the Bit i
of Plane 4 of the state yj in Branch j is then given by eTi ·M

j
roll · yroll, where yroll is

the restriction of y to Plane 4. Then, we observe that the sequence of values taken by
a given state bit of the part affected by roll over the branches of the expansion layer
(see Figure 3) is a linear recurrence sequence with recurrence polynomial Proll. Indeed,
noting Proll =

∑
n cnX

n, we have for all j:

Proll(yji ) = eTi ·
(∑

n

cnMj+n
roll

)
· yroll = eTi ·

(
Mj

roll · Proll(Mroll)
)
· yroll = 0.

Furthermore, the bits in Planes 0 to 3 follow a linear recurrence with recurrence polynomial
X + 1, so all the state bits follow the linear recurrence given by (X + 1) · Proll.

Linear Recurrence of Monomials Formed on the Rolling State. This can be generalized
to the monomials formed from the bits of the rolling state. In the same way that Mroll

describes the evolution of state bits, one can consider the matrix M≤d
roll describing the

evolution through roll of monomials of degree at most d in the yj state bits, since the
transformation is also linear on this set. Indeed, the updated value of every state bit
after roll is a linear combination of state bits before the update, so the product of d
updated values can be written, by developing the product of the linear combinations,
as a linear combination of monomials of state bits before update with degree at most d.
The characteristic polynomial P≤droll of this matrix provides a recurrence polynomial for
all S(320, d) monomials of degree at most d in the 320 variables of Plane 4. It is also a
recurrence polynomial for monomials of degree at most d in all state variables with at
least one variable coming from Plane 4, since the product of variables of Planes 0 to 3
is constant and can be factored out, leaving a monomial of degree strictly less than d of

3We explicitly give Proll in Appendix.
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y
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y`o−1
i
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Figure 3: Linear recurrence in the Kravatte branches: the sequence (yji )j of highlighted
bits at a prescribed Position i across the branches j = 0, . . . , `o − 1 follows a linear
recurrence described by the polynomial (X + 1) · Proll.

variables from Plane 4. Monomials with variables only from Planes 0 to 3, together with
the constant monomial, are constant and have X + 1 as recurrence polynomial. Thus,
(X + 1) · P≤droll is a recurrence polynomial for all monomials of degree at most d in all 1600
variables of the rolling state. Since Keccak-p has degree two, the recurrence polynomial
(X + 1) ·P≤2n1

roll cancels the sequences of all monomials involved in the algebraic expression
of the outputs of the first part of the expansion layer. Its degree is S(320, 2n1) + 1. We give
estimates of this value for n1 = 2, 3, 4 in Table 3. For larger values of n1, the technique
is not applicable since the degree of the polynomial, e.g., 2146.5 for n1 = 5, and 2227.3

for n1 = 6 goes beyond the limit set on the data complexity in the security claims of
Kravatte.

Computing the Recurrence Polynomial for Monomials of Degree at Most d. Computing
the characteristic polynomial of a matrix usually requires to compute a determinant, but
can be done in the case of P≤droll in time quasilinear in the size of the matrix M≤d

roll, without
even forming the matrix, due to algebraic properties of linear recurring sequences. Indeed,
it has been shown in [Key76] that the roots of this polynomial are all simple and elements
of the algebraic extension F2[X]/Proll. Denoting by α the class of X, they are given by
αt, were t ∈ [1, 2320 − 1] takes all values with Hamming weight at most d. Thus, P≤droll can
be formed as the product of N = S(320, 2n1) polynomials of the form X + αt.

In a first stage, the polynomials whose roots are conjugates are multiplied together,
resulting in a set of irreducible polynomials in F2[X]. In a second stage, these polynomials
are multiplied together. Multiplication of two polynomials in F2[X] of degree at most n can
be performed efficiently for large n using the Schönhage algorithm [Sch77], with asymptotic
complexity M(n) = O(n logn log logn). This algorithm has been implemented in the
gf2x library [BGTZ08] and experimental data indicates the hidden constant is small. To
take full advantage of fast polynomial multiplications, the computation of P≤droll can be
performed tree-wise: At each step, polynomials are multiplied by pairs, resulting in a
set of half as many polynomials with double degree. Taking into account the asymptotic
complexity of fast polynomial multiplication, the complexity TP of the computation can
be estimated by

logN∑
i=0

2iM
(
N

2i

)
≤ N log2 N log logN.

We give estimates of this time complexity TP for small values of n1 in Table 3.

Impact on the Cryptanalysis of Kravatte. Using the linear recurrence given by the
polynomial (X + 1) · P≤2n1

roll =
∑
j djX

j , we eliminate all monomials in y from the system.
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More precisely, the i-th equation is obtained by summing Ai+j +Bi+j = 0 equations:∑
j

dj · Keccak-pn1
(
rolli+j(y)

)
+
∑
j

dj · Keccak-p−n2
(

kout + zi+j
)

= 0,

and since the first sum is null due to the relation from the linear recurrence, this yields∑
j

dj · Keccak-p−n2(kout + zi+j) = 0. (1)

As a consequence, in the case n2 = 2, the number of monomials to write this system
goes down to 236.5, since only the monomials in kout remain (see Table 2). Each equation
of the system requires S(320, 2n1) consecutive output blocks to be formed, but since a
sliding-window mechanism can be used to form the equations, only S(320, 2n1) + 1

1600 236.5

blocks are necessary to form the system. We can process the available blocks on the
fly: For each block, we add its contribution to the system of kout monomials in the
equations prescribed by the recurrence polynomial, i.e., Block zj contributes to Equation
i if dj−i = 1. This does not increase the memory complexity, but increases the time
complexity of building the system by a factor of S(320, 2n1).

Applying this attack with n1 = 2, we can attack Kravatte-(nd, 4) for any nd. The
recurrence polynomial to store has degree 228.7, so to collect enough data to solve the
linearized system, we need 228.7+ 1

1600 236.5 ≈ 228.8 output blocks. Computing the recurrence
polynomial requires about 240.7 basic operations4 (see Table 3). Solving the linearized
system requires Tsolve = (236.5)3 ≈ 2109.5 operations, and a memory of

(
236.5)2 ≈ 273 bits.

However, the most time-consuming part of the attack resides in the construction of the
system. For each output block and every bit of the intermediate state, the bit is written
as a linearized algebraic expression of bits in kout, depending on zj , as explained at the
end of Section 3.1. Then, this expression is added to the equations it contributes to build,
depending on the recurrence polynomial. Every equation is built by the addition of at
most S(320, 2n1) contributions, and the cost of adding one contribution is given by the
size of an expression, which is about 236.5. Computing the algebraic expression of one
bit essentially boils down to the multiplication of three polynomials in 320S(5, 3) = 8000
monomials each that appear in the inversion of n2 = 2 rounds of Kravatte. Overall,
constructing the system amounts to approximately

Tbuild =
(
S(320, 2n1) + 1

1600236.5
)
· 1600 · 80003 + S(320, 2n1) ·

(
236.5)2

operations. We give estimations of the overall time complexity TP+Tbuild+Tsolve in Table 3,
and stress again that there are several options to optimize this step, which are addressed
in Section 5.

With n1 = 4, the attack breaks the security claim of Kravatte-(nd, 6) for any nd.
Indeed, the recurrence polynomial has degree 288.4 and can be computed in about 2104

simple operations, which allows to collect the equations using about 288.4 output blocks.
Then, the system can be constructed as before (with non-optimized computations, it
requires about 2161.4 basic operations) and solved similarly as in the case n1 = 2.

We summarize the attack complexities in Table 3. Additional optimizations that further
lower these complexities are presented in Section 5. In this table, the two first lines provide
attacks for the ePrint version of full Kravatte-(4, 4), and the last line gives an attack for
the strengthened variant announced at ECC 2017.

4We performed this computation and provide the full expression of P ≤4
roll

in the
verification_LinearRecurrence folder of the supplementary material. The code located in the
same folder provides an experimental verification of the linear recurrence distinguisher after n1 = 2 rounds.
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The Particular Case of One Backward Round. In the case of one backward round, i.e.,
n2 = 1, Equation (1) can be solved by exhaustive search. Note that the linear layer of the
round considered can be removed from the analysis, and thus no diffusion takes place. As
a consequence, it is possible to recover kout Sbox by Sbox, by guessing the five kout bits
corresponding to a given Sbox, and checking that sums of χ−1(kout + zj) over positions
j determined by the recurrence polynomial yields zero, which is the case for the correct
guess. For each sum, this gives a t = 5-bit test on the g = 5 guessed bits of kout. With
only one sum, the probability that no false alarm occurs is (1− 2−t)2g−1 ≈ 0.37, so the
rate of Sboxes with false alarms on corresponding kout bits is too high to recover the
complete kout by key enumeration. However, with two sums, one gets a t = 10-bit test,
and the probability of absence of false alarms raises to 0.97, which amounts to about 10
Sboxes with false alarms, making a final offline key candidate enumeration possible.

With (n1, n2) = (3, 1), it is thus possible to attack Kravatte-(nd, 4) for any nd with
a data complexity of 251.2 blocks and a time complexity dominated by the recurrence
polynomial computation time Tp = 265.1. The attack requires to precompute and store
P≤3
roll and thus has memory complexity 251.2.

Table 3: Degree and computation time of recurrence polynomial for all monomials in y
after n1 rounds of Keccak-p, and attack complexity against Kravatte-(nd, ne), for any
nd and ne = n1 + n2. For optimized attacks, see Section 5.

ne n1 + n2 deg
(

P≤d
roll

)
TP Data∗ Memory∗ Time∗

4 2 + 2 228.7 240.7 229.3 273.0 2109.5

4 3 + 1 251.2 265.1 251.2 251.2 265.1

6 4 + 2 288.4 2104.0 288.4 288.4 2161.4

∗: These complexities are given without the optimizations addressed in Section 5.

4 Higher Order Differential Cryptanalysis of Full Kravatte

In this section, we highlight the existence of higher order differential attacks against
Kravatte. We describe in Section 4.1 a property of the compression layer of Farfalle,
which weakens the overall construction against higher order differential attacks. The
process of our attack is depicted in Section 4.2. To experimentally validate the correctness
of the approach, we use a round-reduced variant of Kravatte.

In Section 4.3, we show how an adversary can use the higher order distinguisher
to mount a chosen-message key-recovery attack against Kravatte-(nd, ne) such that
nd +ne ≤ 8. In the last section of the paper dedicated to various optimizations, we present
a variant of this attack allowing to improve the overall data complexity (Section 5.2) and
various techniques to substantially decrease the complexities.

4.1 Construction of Affine Spaces in the Accumulator
We describe here a property of the compression layer of Farfalle, already identified in
[BDH+16, Section 5.4], that enables an adversary to construct an affine space of dimension
n in the accumulator block. Given an n-block padded message M = (m0, . . . ,mn−1), we
recall that we denote Acc(M) the associated accumulator value

∑n−1
i=0 pc

(
mi + kini

)
.

Let M0 = (m0
0, . . . ,m

0
n−1) and M1 = (m1

0, . . . ,m
1
n−1) denote an arbitrary pair of

padded messages such thatm0
i 6= m1

i for all i. These messages are used to build the following
structure of 2n n-block input messages: S = {(mε0

0 , . . . ,m
εn−1
n−1 ), (ε0, . . . , εn−1) ∈ {0, 1}n}.
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Figure 4: Higher order differential distinguisher on Kravatte. Summing over the whole
affine space Acc(S) the states obtained after application of ` = nd + ne − ε rounds to the
blocks Xi of the affine space, i.e., summing along every bold line, yields zero.

Let us denote by δi the one-block difference δi = pc
(
m0
i + kini

)
+ pc

(
m1
i + kini

)
. If

n� b = 1600, the δi are linearly independent with overwhelming probability. It is easy to
see that Acc(S) is then the n-dimensional affine subspace Acc(M0) + 〈δ0, . . . , δn−1〉.

In other words, we can easily build structures of 2n n-block messages that are trans-
formed by the compression layer into an affine space of one-block accumulator values of
dimension n. Note that this does not depend on the number of rounds in pc.

4.2 Higher Order Differential Attacks Against Kravatte
We can use the property of Farfalle described above to mount higher order differential
attacks on Kravatte-(nd, ne), as long as nd + ne ≤ 8.

Summing the images of a function f over an affine subspace of dimension n is equivalent
to applying the n-th differential of f to an element of the subspace [Lai94]. The round
function of the Keccak-p permutation used in the Kravatte instance is of algebraic degree
two. Hence, the partial expansion layer, starting from the accumulator value and applying
` permutation layers, is of degree 2`. By building an affine space of dimension n = 2` + 1
with an input structure S of 2n messages, each one containing n blocks, the sum over this
affine space of the intermediate values after the partial expansion is zero (see Figure 4).

This distinguishing property can then be used to mount last-round attacks: Starting
from the Kravatte output values of the plaintext in the structure, by inverting the last
ε = nd−ne−` permutation layers of the expansion layer, and summing all the contributions,
one gets equations on the output key kout: namely,

∑
m∈S Keccak-p−ε(kout + zm) = 0.

To demonstrate the validity of the higher order differential distinguisher described
above, we applied it on ShortKravatte. In ShortKravatte, nd = 0 so that the
expansion layer consists of four rounds of the Keccak-p permutation, instead of nd+ne = 8
rounds for the full Kravatte instance. Hence, with a structure of 216+1 input messages of
17 blocks, the higher order differential distinguisher spans the whole expansion layer and
can be observed by summing directly the output values of the messages in the structure.5

4.3 Last-Round Attacks
One Last-Round Attack. One can apply the higher order differential strategy to mount a
basic key-recovery attack against Kravatte-(nd, ne), nd+ne ≤ 8, by considering a 7-round
partial expansion layer and a final last-round (i.e., ε = 1). This implies to use structures of

5The C++ source code that demonstrates this distinguisher appear in the verification_HigherOrder
folder of the supplementary material.
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227+1 = 2129 messages of 129 blocks. The higher order differential distinguisher continues
to apply through the linear layer of the last round. Thus, no diffusion takes place in the
inverted part of the last round, and the key-recovery method given at the end of Section 3.2
for the case of one backward round applies, with the small variation that one gets t = 10-
bit tests by requesting two output blocks per message. This attack has a time and data
complexity of 2129 × (129 + 2) ≈ 2136.0, and negligible memory complexity.

We have implemented this attack on a reduced version of Kravatte where nd+ne = 5
using structures of 217 messages of 17 blocks, and find that the number of candidates for
kout is reduced from 2256 to about 218. We note that kout can be uniquely determined
using three to six output blocks.6

Two Last-Round Attack. We now describe how to improve the time and data complexity,
leveraging the analysis of the algebraic expression of Keccak-p−2(kout + z), in the same
way as for the previous attack (Section 3.1). This enables to consider a higher order
distinguisher over ` = 6 Keccak-p rounds (i.e., ε = 2). The adversary builds a structure S
of 265 plaintexts of 65 blocks as described above. As a consequence, the 265 intermediate
values at any bit position before the penultimate non-linear layer sum to zero.

As described in the previous section (see Table 2), the number of monomials involved
in the system corresponding to the inversion of the two last rounds of Kravatte is
about 236.5, and the system can be solved if one collects about the same number of
equations. These can be obtained considering, for every message of the structure, outputs
of 1

1600 236.5 ≈ 225.9 blocks. The total data complexity (expressed as the sum of all input
and output blocks) of this attack is therefore 265 × (65 + 225.9) ≈ 290.9 blocks. The system
of equations can be computed on the fly, therefore there is no need to store all the inputs
and outputs of Kravatte. However, storing the system requires (236.5)2 = 273.0 bits of
memory. The evaluation of the time complexity is more involved, as one needs to consider
all the steps of the attack. For each equation and each input, the most expensive step
consists in computing the penultimate χ−1 layer, which requires to get the product of
three polynomial expressions, each of which can contain up to 8000 monomials. Therefore,
we can estimate the complexity of this step of the attack to 236.5 × 265 × 80003 ≈ 2140.4

bit operations. Solving the system of equations is far less expensive, as its time complexity
is at most cubic in the number of equations, which leads to (236.5)3 = 2109.5 operations.

As we will show in Section 5, these “naive” data and time complexities can be substan-
tially improved using various optimizations.

5 Optimization Techniques for the Cryptanalysis

5.1 Minimizing the Number of Variables for Two Inverse Rounds
In this section, we improve further the linearization of Keccak-p−2. Notations used in the
following are summarized on Figure 5.

χ−1 θ−1 (π ◦ ρ)−1 χ−1

kout

F j E j D j C j B j

A j

Figure 5: Notations used in Section 5.1.

The attacks described in Section 3 and Section 4 are all based on the construction and
the linearization of polynomial expressions whose variables are the bits of kout. Each bit
of F j can be expressed as a low-degree polynomial in key bits kout, whose coefficients are

6The source code for this 1-round attack is also provided in the verification_HigherOrder folder of
the supplementary material.
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functions of the output states Aj . We have seen in Section 3.1 that using the row structure
of χ−1 layers and the absence of diffusion before the first χ−1 layer enables to decrease
the number of variables to be considered in the linearized expressions. We now show that
this can be improved further by additionally considering the number of monomials in the
polynomial expression of χ−1, by limiting the number of considered bit positions of F j
and by summing two positions of F j . We note that this improvement comes at the cost of
a slight increase of the data complexity, since only one equation is extracted from each
output block. We also note that this last optimization is compatible with the attacks
presented in Section 3 and Section 4 because the sum over sets of output block messages
they consider are performed consistently on all the positions of the blocks. We study each
of the successive layers of the backward computation of Kravatte.

External χ−1 Layer. The inverse Sbox has algebraic degree three. More precisely, we get
the following expressions (we omit indexes y and z and the block number j):

Cx = Bx+1Bx+3Bx+4 +Bx+1Bx+2 +Bx

=
(
koutx+1 +Ax+1 + 1

) (
koutx+3 +Ax+3 + 1

) (
koutx+4 +Ax+4

)
+
(
koutx+1 +Ax+1 + 1

) (
koutx+2 +Ax+2

)
+
(
koutx +Ax

)
.

Introducing the new variables wx = koutx+1koutx+3koutx+4 + koutx+1koutx+2 + koutx , ux = koutx+3koutx+4 +
koutx+2, and vx = koutx koutx+2, this can be rewritten as wx + Px(A), where Px(A) is an affine
combination of ux, vx+1, vx+4, koutx+1, koutx+3, koutx+4, with coefficients determined by A. The
definition of new variables for the sum of monomials sharing the same coefficient instead
of for each monomial enables us to limit the number of variables per bit of the C state
to 8, including the variable w with constant coefficient and the coefficient of the degree-0
monomial. The total number of variables over the state is however the same with both
approaches. For each of the 320 Sboxes, one generates 10 variables u, v of algebraic degree
two in key bits and 5 variables w of algebraic degree three. Taking into account the key
bits, the total number of variables is therefore 320× (5 + 10 + 5) = 6400 at that point. This
already improves on Section 3.1 since all degree-3 variables are not considered anymore.

Intermediate Inverse Affine Layer. The linear layers consist in the bit-moving layers ρ
and π and the linear diffusion layer θ. All these layers do not create new monomials:
monomials are simply moved or added to other polynomial expressions. The linear layers
only contribute indirectly to the complexity of the algebraic expressions by breaking
any independent subset, leading to consider that any bit of the state can be affected by
monomials in variables coming from any position of the final state A. This is especially
true for the high-diffusion transformation θ−1, whose output bits depend on approximately
half of its input state. This has the effect to allow the creation during the next non-linear
layer of nearly all the combinations of monomials output by the previous non-linear layer.

More precisely, ρ−1 and π−1 move every bit of the state. We denote σ the permutation
such that bit σ(x, y, z) of the state is moved to position (x, y, z). Then, θ−1 is a linear
diffusion layer with the following property. For each column Dx,z of the state, there is a
set of bit positions Sx,z such that each bit after θ−1 is given by

Ex,y,z = Dx,y,z +
∑

(x′,y′,z′)∈Sx,z

Dx′,y′,z′ .
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Therefore, we have

Ex,y,z = Cσ(x,y,z) +
∑

(x′,y′,z′)∈Sx,z

Cσ(x′,y′,z′)

= wσ(x,y,z) + Pσ(x,y,z)(A) +
∑

(x′,y′,z′)∈Sx,z

(
wσ(x′,y′,z′) + Pσ(x′,y′,z′)(A)

)
= w′x,y,z + Pσ(x,y,z)(A) +Qx,z(A).

In this expression, w′x,y,z is a new variable defined as the linear combination of all the
w variables involved in the expression of Ex,y,z, and Qx,z(A) is the sum of the P ’s over
position set Sx,z. Please note that each Qx,z is considered to potentially involve all the
u, v and kout variables, whereas Px,y,z only has 7 potentially nonzero variables. Also, w
variables influence of E and F is completely given by w′ variables, which are independent
of A. Therefore, w′ variables can replace w variables in the description of the algebraic
expressions of all F j .

Partial Internal χ−1 Layer. We now consider only two bits of information from the state
F j in a same column, e.g., at Positions (0, 0, 0) and (0, 1, 0), and sum their algebraic
expressions. With this approach, we cancel out the multiplication of the term contributing
the most monomials to the expressions of these bits, decrease the total number of variables
and therefore limit the time and memory complexity of our attack by reducing the
complexity of the final linearized system. To this end, we denote P ′x,y,z = w′x,y,z +Pσ(x,y,z).
Omitting index z, we have:

F0,y =
(
P ′1,y +Q1

)(
P ′3,y +Q3

)(
P ′4,y +Q4

)
+
(
P ′1,y +Q1

)(
P ′2,y +Q2

)
+
(
P ′0,y +Q0

)
.

When considering F0,0 + F0,1, all products of Q-components cancel out, as Q polynomials
are identical over a column. In particular, all arbitrary products of three u, v and kout
variables do not occur anymore. We get:

F0,0 + F0,1 =
(
P ′1,0 + P ′1,1

)
Q3Q4 +

(
P ′3,0 + P ′3,1

)
Q1Q4 +

(
P ′4,0 + P ′4,1

)
Q1Q3

+
(
P ′1,0P

′
3,0 + P ′1,1P

′
3,1

)
Q4 +

(
P ′1,0P

′
4,0 + P ′1,1P

′
4,1

)
Q3

+
(
P ′2,0 + P ′3,0P

′
4,0 + P ′2,1 + P ′3,1P

′
4,1

)
Q1 +

(
P ′1,0 + P ′1,1

)
Q2

+
(
P ′0,0 + P ′1,0P

′
2,0 + P ′1,0P

′
3,0P

′
4,0 + P ′0,1 + P ′1,1P

′
2,1 + P ′1,1P

′
3,1P

′
4,1

)
.

All the Q polynomials are affine combinations of the same set of all the 320×(5+10) = 4800
kout, u and v variables, and each P ′ polynomial is an affine combination of 7 variables.
Taking into account the constant coefficients of these polynomials, the number of variables
required to linearize the expression of F0,0 + F0,1 is therefore:

3× 2× 8×
(

4801
2

)
+
(
3× 2× 82 + 2× 2× 8

)
× 4801 + 2×

(
8 + 82 + 83) ,

which gives approximately 229.0 variables, instead of the approximately 236.5 monomials
obtained with the simpler bound from Section 3.

Note that there is a trade-off between the number of variables of the linearized system
and the number of equations that are obtained from on block. Indeed, by considering more
than one pair of positions, additional w′ variables have to be considered, together with the
monomials resulting from the products of these variables with kout, u and v variables. We
do not investigate further this trade-off, since we are mainly concerned with the reduction
of the size of the system in order to improve the attacks time complexity, and because this
reduction of the system size limits the degradation of the data complexity.
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5.2 Super Structure of Input Messages
As already presented in Section 4, the higher order differential distinguisher used for
the attack is based on the sum of output messages over a structure of input messages
of dimension n = 65. Due to the property of Farfalle and the algebraic degree of the
Keccak-p round function, this is guaranteed to lead to a sum of corresponding intermediate
states equal to zero. In order to improve the data complexity, we use a super structure of
messages, from which structures of dimension 2n can be extracted. This technique has
been used previously, e.g, in [DLMW15].

Principle. Let us consider the set of messages obtained by the concatenation of n + t
blocks, Block j being chosen among two possibilities (mi

j)i∈{0,1}:

S =
{

(mε0
0 , · · · ,m

εn+t−1
n+t−1 ), (ε0, · · · , εn+t−1) ∈ {0, 1}n+t} .

We can then extract from this super structure several n-dimensional structures by fixing
the values of the blocks at t given positions, and subsequently build from each of these
structures equations in the output key bits kout.

When extracting n-dimensional structures from an n+ t super structure, care has to
be taken to avoid linear dependencies that decrease the expected amount of equations
that can be formed. Indeed, let us consider S∗, an (n+ 1)-dimensional super structure,
and the n-dimensional structures S0∗ = m0 ∗ . . . ∗, S1∗ = m1 ∗ . . . ∗, S∗0 = ∗ . . . ∗m0 and
S∗1 = ∗ . . . ∗m1, where ∗ denotes consecutive positions with two possible values at each
position, and 0 (resp. 1) denotes a position with fixed m0 (resp. m1), value. Then, we
have S0∗ ∪ S1∗ = S∗ = S∗0 ∪ S∗1. As a consequence, given the sum of the intermediate
states over three of these five structures, we can derive linearly the sum over the remaining
structures, and thus they does not provide additional equations to include into the system.

We can obtain
(
n+t
t

)
structures by selecting m0 blocks at exactly t positions of the

super structure, and keeping the choice among two values on the other n positions. These
structures lead to linearly independent equations since the message containing n blocks
equal to m1 at given positions only appear in one specific structure.

Increasing the Number of Structures Extracted from a Super Structure. More generally,
we can obtain S(n+ t, t) structures by selecting m0 blocks at any given 0 ≤ i ≤ t positions
of the super structure, and keeping the choice among two values on the other n positions.
Indeed, let us associate to every structure an integer, whose binary representation represents
the indeterminate positions of the structure. Let us also associate to every message an
integer whose binary representation is the selection pattern of m0 and m1 blocks. Ordering
the structures by decreasing value of their representative and the messages by decreasing
values of their associated integers, the binary structure/message membership matrix
(δMj∈Si)i,j is in row echelon form (see Figure 6 in Appendix), which proves the linear
independence of equations generated from these structures.

Finally, we remark that the (n + t − i)-dimensional structures generated above can
be generated linearly from the n-dimensional structures where the fixed message blocks
are selected from {m0,m1}. It it thus possible to select S(n + t, t) such n-dimensional
structures leading to independent equations.

Computing Equations from Super Structures. There are at least two possible strategies
to build the equation system using super structures. First, we can store all the data blocks
that we get, and compute the system equation by equation, recomputing the contribution
from each block of a given structure. Otherwise, we can handle the data block per block,
building all the system of equations at once.

The first strategy requires to store all the data blocks during the computation of the
system, whereas the second approach has no specific memory requirements and potentially
allows to spare computation time. Nevertheless, extra memory can be required for the
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construction of the system of equations itself. This will be studied in Section 5.3. In
the following, we assume that we select the second approach, and compute all equations
simultaneously, handling the available data block by block.

Complexity Analysis. The major benefit of using super structures of input messages is to
reduce the data complexity of the attack. By considering super structures of size n+ t
and `o output blocks per message, the data complexity is (n + t + `o)2n+t blocks. The
number of equations we get is b`oS(n+ t, t), assuming one does not use the optimization
from Section 5.1 and computes b equations per structure. Otherwise, only one equation is
recovered per structure, and the total number of equations is `oS(n+ t, t).

We select the parameters of our attack as follows. One aims at getting Neq equations,
therefore we need that b`oS(n+ t, t) ≥ Neq (resp. `oS(n+ t, t) ≥ Neq) if we do not reduce
(resp. we reduce) the number of equations. Thus, we choose `o = dNeq/(S(N + t, t)b)e
(resp. `o = dNeq/S(N + t, t)e. As our aim is to reduce the amount of data necessary for
the attack, we then need to choose t so as to minimize (n+ t+ `o)2n+t.

If we combine these super structures with the reduction of the number of equations,
we need Neq ≈ 229.0. This leads to t = 5, `o = 4 and a data complexity of 274.7 blocks.
If we use only super structures, we need Neq ≈ 236.5 equations. We then compute t = 4,
`o = 5 and reach a data complexity of 273.9 blocks.

5.3 Counters
We specify here two algorithms that the adversary might use to build a system of equations
from the outputs, and study their time and memory complexities, in order to determine
the optimal choice in each version of our attack.

Description of the Systems of Equations. The attacks we want to optimize are either
based on the higher order differential property or on the use of a polynomial derived from
a stream-oriented description of the expansion layer of Kravatte. Each equation of the
system is derived from a linear relation on bit values two rounds before the output. It is
obtained by summing the contributions of several output blocks. The expression of such
a contribution requires the computation of the polynomial expression of one bit (or one
linear combination of bits) two rounds before the end of Kravatte, considering key bits
as variables.

In the following, we consider that the bottleneck of such an operation consists in the
multiplications of three polynomials that stems from the degree-3 term of the internal χ−1

layer. The complexity of such an operation is estimated as the product of the number of
terms of each of the three polynomials.

Definitions and Notations. We call equation a relation involving key bits and newly
introduced key-dependent variables. The equations we use are computed by summing
polynomials that depend on one output block. We use the generic term expression to refer
to such a polynomial, which is computed by inverting two rounds of Kravatte. The
addition of a given expression when building an equation is called a contribution.

We use Neq to denote the total number of equations that is needed to solve the system,
which is supposed to be equal to the number of variables. Therefore, we have Neq = 229.0 if
optimization of Section 5.1 is implemented, and 236.5 otherwise. We denote by S the number
of contributions that one needs to add to get each equation. This number depends on the
kind of distinguisher that is used. For the 6-round higher order differential distinguisher,
we have S = 265. If we use the linear recurrence distinguisher, we need to sum expressions
over all the block positions given by the nonzero coefficients of the recurrence polynomial.
We estimate it as half the degree of the polynomial (see Table 3). Conversely, we call R
the average number of equations each computed expression contributes to. When handling
a specific output block, one computes the polynomial expression of bits two rounds before
the output, then add its contribution to the R equations (on average) it is involved in.
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We also denote by Npar the maximum number of equations that are being computed at
the same time during the process. When using the linear recurrence distinguisher or the
higher order differential distinguisher with super structures, we compute all equations in
parallel, and Npar = Neq, whereas for the higher order differential distinguisher without
super structures, we build 1 or 1600 equations in parallel, depending on the number of
bits of information we use per block. We also denote by Nprod the number of products
of three monomials that one needs to compute when inverting the internal χ−1 layer.
In the general case, Nprod is dominated by the product of three polynomials in 8000
variables, which can be considered to cost 80013 ≈ 238.9 elementary operations. If we
apply optimizations of Section 5.1, the most expensive part consists in 6 multiplications of
3 polynomials: 1 with 8 nonzero coefficients and 2 with 4801 nonzero coefficients. We then
have Nprod = 6× 8× 48012 ≈ 230.0 elementary operations.

A Direct Approach. The most straightforward way to proceed is to run through all the
output blocks that are needed to get enough equations: For each of them, we compute each
expression that is needed to build the system, and add it to all equations it contributes to.

Using this technique does not require a specific amount of memory, other than the one
used to store the linearized system. We assume that all expressions originating from a
single block of output are computed independently. The time complexity to compute each
expression in key bits that contributes to the system of equations is Nprod operations. The
total number of contributions is Neq × S, and therefore the total number of expressions
one needs to compute is Neq × S/R. After computing these expressions, one needs to add
them to the equations they contribute to. The total number such additions is Neq × S.
As the number of equations equals the number of variables, such an addition costs Neq
elementary operations. Therefore, the time complexity Tdirect of this technique is given by

Tdirect = Neq × S ×
(
Nprod/R+Neq

)
.

An Optimization Based on the Use of Parity Counters. Our second technique relies on
the following observation. Each of the polynomials that are multiplied during the internal
χ−1 layer are linear combinations of output bits of the external χ−1 layers. Such a bit only
depends on the five bits of the output block corresponding to one Sbox output. Moreover,
when expanding the products of the internal χ−1 layer, one gets the sum of products of
three such bits, which only depends on 15 bits of the output blocks, corresponding to the
outputs of three Sboxes.

For each equation, the computation of all the S contributions leads to computing
several times these products, as soon as S exceeds 215. Our idea is then to compute
these products only once for each value V of the 15 output bits. This can be done in
a precomputation step. Then, the contribution of each of these results is added to the
final equation if and only if the number of occurrences of V is odd (as the sum of an
even number of identical values cancels out in characteristic two). This can be achieved
as follows: For each output block, one runs through all useful sets of three Sboxes, and
update a parity counter for the 15 output bits of these Sboxes, for each equation the
current output block contributes to. Each parity counter consists of 215 parity bits, which
are used to store the parity of the number of occurrences of all values of the 15 output
bits of the set of three Sboxes defining the counter. Then, one adds to each equation the
contribution corresponding of each possible value of each counter.

We denote by Nctr the number of counters that are used for each equation. In the
general case, one needs a parity counter set for each possible combination of three output
Sboxes, which makes Nctr =

(320
3
)
≈ 222.4. When the number of equations is optimized,

we consider the multiplications of six bits after the external χ−1 layer with two dense
polynomials. Therefore, one only needs at most Nctr = 6×

(320
2
)
≈ 218.2.

The memory complexity of this step is the amount of memory that is needed to store
all the parity bits, which is Mctr = Npar × Nctr × 215 bits. The time required for the
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attack encompasses the updates of parity counters and the addition of contributions of
individual counter values to all the equations. The value of each counter only contributes
to the coefficients of monomials in key bits at the 15 same positions. Therefore, adding
the contribution of such a counter requires at most 215 key additions. For each set
of three Sboxes, there are 215 counter values to consider. Therefore, we have: Tctr =
Neq ×Nctr × (S + 230).

Comparison Between the Two Techniques. From the formulae above, we always have
Tdirect > N2

eq × S. If Tctr is smaller than this value, the time complexity of the second
algorithm is better. This is equivalent to Nctr × (S + 230) < Neq × S. Moreover, the
number of possible counters is bounded by

(320
3
)
≈ 222.4, whereas the number of equations

is at least 229.0 when optimization of Section 5.1 is implemented. Therefore, a sufficient
condition for the second algorithm to be more efficient becomes S+ 230 ≤ 229.0−22.4, which
is equivalent to S ≥ 230−6.6 = 223.4. In our attacks, S is the number of elements of an
affine space of a higher order differential distinguisher or the number of nonzero coefficients
of a recurrence polynomial. In all cases we focus on, it is larger than this bound.

The parity counter based attack should therefore be used in any case, unless one aims
at optimizing the memory required by the attack and the storage of counter values is its
bottleneck in terms of memory complexity.

5.4 Optimizing the Attacks
The high number of different attacks and potential combinations of optimizations makes it
difficult to give an exhaustive list of all the possible combinations and their complexities.
However, we give numerical applications for a few of them. These complexities are
summarized in Table 1. We explain here how we obtain the optimized complexities.

Linear-Recurrence Attack on Kravatte-(?, 4) with ne = 2 + 2. We use both optimiza-
tions of Section 5.1 and Section 5.3. As shown in Section 3.2, the precomputation step has
a time complexity of TP = 240.7 elementary operations and a memory complexity of 228.7

bits to store the recurrence polynomial. As we reduce the number of variables, we only
get one expression per block. The data complexity is then changed to 228.7 + 229.0 ≈ 229.9

blocks (from 228.7 + 1
1600236.5). The time complexity to build the system is about 277.5

operations, and the memory complexity to store the counters is 262.2 bits. Finally, solving
the system requires

(
229)3 = 287 operations, and storing it about 258 bits.

Overall, the time complexity of the attack is 287 basic operations, the memory complexity
is 262.3 bits and the data complexity is 229.9 blocks.

Linear-Recurrence Attack on Kravatte-(?, 6) with ne = 4 + 2. We use the same
optimizations for the attack on ne = 6 rounds. The memory required for the attack is
now mainly due to the storage of the recurrence polynomial, which requires 288.4 bits. As
the data complexity mainly comes from the high degree of this polynomial, it is still 288.4

blocks as in Section 3.2. Finally, the time complexity of this attack is dominated by the
construction of the system, which amounts to 2134.6 elementary operations.

Higher Order Differential Attack on Kravatte-(4, 4) Using All Optimizations. We
now focus on attacks based on the higher order differential distinguisher, and first try to
apply all three optimizations. As shown in Section 5.2, the data complexity is 274.7 blocks.
During the construction phase, the memory required for the parity counters is again 262.2

bits, and its time complexity is 2112.2 operations, which is the most time-consuming part
of the attack. The memory and time complexities of the system resolution are the same as
for the linear-recurrence attack, increasing the memory complexity to 262.3 bits.

Memory-optimized Higher Order Differential Attack on Kravatte-(4, 4). As the mem-
ory required mainly comes from the storage of parity counters, we can drop the optimization



C. Chaigneau, T. Fuhr, H. Gilbert, J. Guo, J. Jean, J.-R. Reinhard and L. Song 21

based on super structures. The data complexity goes up to 265 × (65 + 229) ≈ 294 blocks,
and the memory complexity drops to the 258 bits required to store the system. The time
complexity is left unchanged.

Data-optimized Higher Order Differential Attack on Kravatte-(4, 4). Similarly, to
minimize the amount of data needed for the attack, we can drop the optimization of Sec-
tion 5.1. As shown in Section 5.2, the data complexity decreases to 273.9 blocks, but the
number of equations required increases to 236.5. The time and memory complexities of the
construction step are respectively increased to 2123.9 operations and 273.9 bits. Adding the
storage of the system (273 bits), the memory complexity of the attack becomes 274.5 bits.

6 Concluding Remarks and Discussion

We proposed in this paper several key-recovery attack strategies breaking the security
claims of the recent PRF proposal Kravatte. The attacks are primarily focused on
either the convergence point or the divergence point of the high-level structure that allows
to compress virtually any number of blocks to a single one in an incremental way, and
conversely, to expand a single block to almost any number of output blocks. The properties
of these two sensitive points of the computation, where all the input information is packed
into a single block (right after the compressing phase and right before the second step of
the expansion phase), together with the low algebraic degree of the Keccak-p permutation,
are leveraged in our attacks. From this ambitious and aggressive design structure and the
proposed attacks, we would like to draw some high-level conclusions.

First, the non-linear permutations pc in the compression layer do not prevent the
construction of an affine space at its output. This is inherent to the design and cannot
be thwarted by simply increasing the number of rounds in pc. Secondly, the middle
non-linear permutation pd applied to the accumulator does not increase the security of the
expansion layer, as one can target the second step of the expansion layer, i.e., applications
of pe to the evolving rolling state, independently. The design incentive was probably to
factor out a part of the non-linear transformations of the expansion layer to increase the
performances of the output generations, but it appears that such an optimization strongly
decreases the security. Finally, the last non-linear permutations pe used to produce each
output block in Kravatte have low algebraic degree and are applied after a small linear
diversification mechanism. This results in a bit mixing much simpler than expected, which
can be distinguished before the end of the expansion layer and used to recover the key by
inverting the remaining part.

We note that one can interpret all ours attacks in terms of stream cipher analysis,
with either attacks on the IV-processing part (the compression layer) or on the keystream
generation part (the expansion layer). Recasting Kravatte in this light may help to
improve its design. We have no strong views on how best to patch Kravatte while
retaining its incrementality and parallelizability and without incurring too strong a penalty
on its performance.
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A Appendix
We explictly give the degree-320 recurrence polynomial Proll used in Section 3 as

Proll = x320 + x262 + x246 + x234 + x218 + x204 + x202 + x198 + x191 + x186 + x183 + x182

+ x176 + x172 + x134 + x133 + x131 + x125 + x123 + x117 + x109 + x106 + x105 + x102

+ x99 + x97 + x91 + x90 + x89 + x88 + x81 + x76 + x74 + x70 + x69 + x67 + x64 + x63

+ x61 + x60 + x59 + x58 + x55 + x53 + x48 + x47 + x45 + x44 + x41 + x39 + x38 + x35

+ x33 + x28 + x27 + x25 + x24 + x17 + x15 + x7 + 1.

We note that the minimal polynomial given by the Kravatte designers in [BDH+16]
corresponds to the inverse matrix M−1

roll.
Also, we visually represent the membership matrix discussed in the optimization relying

of the super structures from Section 5.2.

1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 . . .



**** 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .

***0 1 1 1 1 1 1 . . .

**0* 1 1 1 1 1 1 . . .

**00 1 1 1 . . .

*0** 1 1 1 1 . . .

*0*0 1 1 . . .

*00* 1 1 . . .

0*** 1 1 1 1 1 . . .

0**0 1 1 . . .

0*0* 1 1 . . .

00** 1 . . .

Figure 6: Example of structure/message membership matrix, with (n, t) = (2, 2).
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