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Abstract. NORX is an authenticated encryption scheme with associated data being
publicly scrutinized as part of the ongoing CAESAR competition, where 14 other
primitives are also competing. It is based on the sponge construction and relies on
a simple permutation that allows efficient and versatile implementations. Thanks
to research on the security of the sponge construction, the design of NORX, whose
permutation is inspired from the permutations used in BLAKE and ChaCha, has evolved
throughout three main versions (v1.0, v2.0 and v3.0).
In this paper, we investigate the security of the full NORX v2.0 primitive that has been
accepted as third-round candidate in the CAESAR competition. We show that some
non-conservative design decisions probably motivated by implementation efficiency
considerations result in at least one strong structural distinguisher of the underlying
sponge permutation that can be turned into an attack on the full primitive. This
attack yields a ciphertext-only forgery with time and data complexity 266 (resp. 2130)
for the variant of NORX v2.0 using 128-bit (resp. 256-bit) keys and breaks the designers’
claim of a 128-bit, resp. 256-bit security. Furthermore, we show that this forgery
attack can be extended to a key-recovery attack on the full NORX v2.0 with the same
time and data complexities. We have implemented and experimentally verified the
correctness of the attacks on a toy version of NORX. We emphasize that the scheme
has recently been tweaked to NORX v3.0 at the beginning of the third round of the
CAESAR competition: the main change introduces some key-dependent internal
operations, which make NORX v3.0 immune to our attacks. However, the structural
distinguisher of the permutation persists.
Keywords: CAESAR Competition · NORX · Cryptanalysis · Forgery Attack · Symmetry

1 Introduction
The purpose of authenticated encryption (AE) is to encrypt and authenticate a plaintext
message in a combined way. A slight extension of this functionality named authenticated
encryption with associated data (AEAD) allows to authenticate at the same time some
extra unencrypted data named associated data. An example of a broadly deployed AEAD
algorithm is the GCM mode of operation of AES [MV04]. The aim of the ongoing international
competition CAESAR, that has been launched in 2014, is to select a portfolio of AE(AD)
algorithms that offer stronger security guarantees or whose performance profiles are better
suited to some execution environments than AES-GCM.

NORX is a family of AEAD algorithms designed by Aumasson, Jovanovic and Neves,
and is one of the 15 CAESAR candidates that were selected in August 2016 for the third
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round of the competition. The overall structure of the NORX algorithm adopts the so-called
monkeyDuplex construction, which is derived from the sponge construction and iterates a
keyless permutation P of a large state [BDPV12]. The design of the permutation P used by
NORX is partly inspired from those of the stream cipher ChaCha [Ber08], the SHA-3 finalist
BLAKE [AHMP10] and its more efficient variant BLAKE2 [ANWW13]. This permutation
operates over states that can be represented as 4× 4 matrix of words whose size w is either
32 or 64 bits. It follows a design close to so-called ARX primitives, as it uses only “R”
operations (circular rotations and shifts), “X” (exclusive or) operations, and modified “A”
operations (modular additions, modified in that carries only propagate to one position to
the left). The key length k, the default tag length t, and the claimed security level of NORX
are all equal to 4w, in other words either all equal to 128 bits or to 256 bits depending on
the value of w.

Three main versions of NORX have been published so far: NORX v1.0 (March 2014), the
initial submission to the CAESAR competition; NORX v2.0 (August 2015), the version that
was evaluated and selected for the third round; NORX v3.0 (September 2016), a version
published shortly after the beginning of the third round that will serve as a basis for the
third-round evaluation. In all versions, the NORX family consists of two main sub-families
of algorithms associated with the word sizes w = 32 and w = 64.

Lightweight variants of NORX, called NORX-8 and NORX-16, have also been proposed by
the same designers [AJN15c]. They follow the same generic strategy as NORX v2.0, with
word sizes w = 8 and w = 16.

Related Work. There exists a handful of papers that study the security of NORX, which
we briefly recall here. First, the designers of NORX provided their own analysis of the
permutation P in the specifications and [AJN15a]. They conclude that no high-probability
differential exists in the primitive, that word-level rotational cryptalysis does not threaten
the scheme, and that no structural distinguisher of the permutation can be used in an
attack on the mode. Later in [DMM15], Das et al. describe statistical variants of zero-sum
distinguishers that allow to distinguish 3.5 rounds of the permutation of NORX-32 and the
full-round permutation of NORX-64 from random permutations. At FSE 2016, Bagheri
et al. show in [BHJ+16] that the slow diffusion of G−1 can be leveraged into a state/key
recovery for a reduced versions of NORX v2.0 where the underlying permutation applies
half the rounds (two out of four). More recently, Dwivedi et al. [DKM+16] analyze the
state-recovery resistance of several CAESAR candidates, including NORX, with respect to
SAT solvers. About NORX, they conclude that state recovery is only possible on NORX-32
when the underlying permutation does not apply more than 1.5 round. Finally, throughout
this paper, we also refer to [JLM14] where Jovanovic et al. give a security proof of the
NORX mode.

Our Contributions. Our main result is an attack on NORX v2.0 that shows that the
security level of the NORX v2.0 algorithms is at most 2w + 2 bits, i.e. about 66 or 130 bits
depending whether w = 32 or w = 64, instead of the 4w bits claimed by the designers.
The attack can be viewed in two ways:

1. as an existential forgery attack with success probability 2−2w−2, for instance 2−66 if
w = 32 bits, that requires to get the authenticated encryption of one single short
chosen plaintext or,

2. as an existential forgery attack with success probability greater than 50% that
requires the knowledge of 22w+2 ciphertexts with their associated tags and the same
number of forgery attempts.1

1Enforcing a limitation of the amount of data handled with a single key does not thwart our attack as
changing the key does not drop the marginal success probability of a single forgery attempt.
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Both variants of the attack break the claim of the designers stating that NORX v2.0
offers a 4w-bit level of security. We additionally observe that once a forgery attempt
succeeds, a key-recovery attack can be easily mounted as the secret key is only injected
during the initialization phase. Namely, a successful forgery can reveal the full internal
state at the expense of an extra offline computation of about 22w operations. Then, same
as was done in [DJ15] on the FIDES authenticated encryption scheme [BBK+13], the full
sponge can be inverted, which reveals the initial state that contains the secret key. This
can be achieved if we assume either chosen-plaintexts attacks, or that a ciphertext-only
adversary interacts with a decryption oracle and gets the plaintext corresponding to any
successful forgery. We have implemented and experimentally verified the correctness of
the attacks on a toy version of NORX v2.0, where the word size w is reduced to 8 bits.

The attack leverages an interaction between the two following non-conservative proper-
ties of NORX v2.0.

• The capacity of the NORX sponge is low: only 4w bits, one fourth of the state size, i.e.
128 bits if w = 32 bits and 256 bits if w = 64 bits. This more aggressive choice than
the 6w-bit capacity that was selected for NORX v1.0 was motivated by performance
considerations, as it allowed to increase the rate of the sponge construction by a
factor 1.25. It was also supported by the security bounds derived from the security
proofs of [JLM14] (substantiated in the security goals section of the algorithm
specification [AJN15b]), up to the fact that the underlying permutation P does not
behave like an ideal permutation.

• The permutation P used in the NORX sponge has strong structural properties that
substantially deviate from the expected behavior of an ideal permutation. Our attack
leverages the structural property that P commutes with a circular rotation of the
columns of the internal state 4× 4 matrix. This property has some connection with
the weaker structural property of P already observed by the designers in [AJN15a]
that the set of states whose four columns are equal is invariant under P.

The former attack can be viewed as a kind of rotational cryptanalysis at the state
level rather than at the word level as considered in [AJN15a] on NORX or more generally
in [KN10]. It also has some connection with the invariant permutation attacks sub-class
of invariant subspace attacks introduced in [LMR15], since in both cases a permutation
of the state words that commutes with a cryptographic state permutation is leveraged,
one difference being that an invariant permutation property is used here in a keyless and
constant-less context.

While the two non-conservative properties leveraged by the attack (the low capacity
and the existence of a commuting rotation) still hold for NORX v3.0, one of the “tweaks”
introduced in NORX v3.0 appears to thwart the former attack, namely the involvement of
the key in the finalization of the tag computation, using an Even-Mansour-like construction.
This finalization was also selected during the conception of another monkeyDuplex-based
CAESAR candidate, namely ASCON [DEMS16].

Finally, we also investigate the security claims of NORX v2.0 and NORX v3.0. We show
that the generic success probability of a forgery attack has to be related to the cumulative
length of forgery attempts (instead of the total number of forgery attempts), as it is also
the case for other AEAD schemes such as GCM. Moreover, we show that even if the total
length of decryption queries is strongly limited, the authenticity bound of the proof does
not guarantee the security level of 24w claimed for NORX.

Organization. The rest of this paper is organized as follows. Section 2 gives detailed
descriptions of NORX variants discussed in the paper. In Section 3, we describe our attack
on NORX v2.0. In Section 4, we study the applicability of our attack to other variants of
NORX. Finally, in Section 5, we discuss the results of our attack and compare them to the
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security claims made by the designers of NORX and to the bounds derived from the security
proofs.

2 Specifications of NORX
We provide in this section a description of the NORX family of Authenticated Encryption
with Associated Data (AEAD) algorithms, through the description of NORX v2.0. We start
by detailing in Subsection 2.1 the keyed-sponge mode and its core permutation. Then,
in Subsection 2.2, we describe the security goals claimed by the designers. Finally, we
outline in Subsection 2.3 the main differences between NORX v2.0 and the other members
of the NORX family.

Notations. In the sequel, we use x||y to denote the concatenation of two bit-strings x
and y, and |x| to represent the bit-length of the bit string x.

2.1 Description of NORX v2.0
We now describe NORX v2.0, which is the version our attack targets. It relies on w-bit
words operations, with w ∈ {32, 64}. We note NORX-w when we consider NORX with a given
w value.

Mode of Operation. NORX is based on the monkeyDuplex sponge construction [BDPVA11]
and relies on a 16w-bit permutation P that we describe later.

The monkeyDuplex sponge construction operates on an internal state S, which in the
case of NORX v2.0 is divided into two distinct parts of respective bit-sizes r = 12w and
c = 4w for a total size of 16w bits. We represent the 16w-bit internal state S of the
construction as a 4× 4 matrix of w-bit words as follows

S =


s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

 .
The value r is called the rate of the sponge, and denotes the amount of data that can

be processed by each call to permutation P. The rate part Sr of the state consists of its
first 12 words. The value c is called the capacity and informally represents the security
level expected from the construction. The capacity part Sc of the state consists of its last
four words. The internal state S can then be written as S = Sr||Sc.

The encryption algorithm Enc takes as inputs a k-bit key K, an n-bit nonce N , a
plaintext M and associated data in the form of a header A and a trailer Z. The header,
plaintext and trailer are three optional strings. The encryption algorithm computes a t-bit
authentication tag T , and a ciphertext C of same bit-length as the plaintext. Similarly,
the decryption algorithm Dec takes as inputs (K,N,A,C, Z, T ) and returns either ⊥ or
M depending on the validity of the authentication tag T .

Encryption and decryption algorithms begin by an initialization phase that sets the
internal state to Sinit: it consists in storing the 4w-bit key K def= k0||k1||k2||k3, the 2w-bit
nonce N def= n0||n1 and some initialization constants (ui) in the internal state, as follows:

Sinit =


n0 n1 u2 u3
k0 k1 k2 k3
u8 u9 u10 u11
u12 u13 u14 u15

 .
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After this step, some parameters of the cipher are XORed to s12, s13, s14 and s15.
Finally, P is applied to the full state.

The processing of the header, plaintext and trailer are similar. We assume that header,
plaintext and trailer are split in blocks of bit-length 12w. To achieve this, any non-empty
field A, M or Z is padded using the so-called multi-rate padding function pad, which works
as follows:

pad(X) = 10f(X,w)1,

where f(X,w) is the smallest nonnegative integer such that 12w divides the total bit-length
of X||pad(X). Header, plaintext and trailer blocks are then processed iteratively. The
whole mode of operation is depicted in Figure 1. Each block B is handled as follows.

1. A domain separation constant is first XORed to the last word of the internal state,
namely s15. Its value depends on the type of data being processed: 0x01 for the
header, 0x02 for the plaintext, and 0x04 for the trailer.

2. The permutation P updates the internal state S; that is: S ← P(S).

3. The header, plaintext, or trailer block B is XORed in the rate part of the state; that
is: Sr ← Sr ⊕B.

4. If B is a plaintext block Mi, the rate part (after XOR with B) is used as ciphertext
block Ci. Note that if Mi is the last plaintext block, the part of Ci obtained from
the padding is not returned as part of the ciphertext.

The last step is the tag generation. To compute the tag, first domain separation
constant 0x08 is XORed to s15. Then, P is applied twice to S. The t-bit tag T (where
t = 4w) is extracted as the 4-tuple of state words (s0, s1, s2, s3).

0

0

init(K,N,w, l, t)

P P

01

P

A0

01

/
r

/
c

P

Aa−1

02

P

M0C0

02

P

Mm−1Cm−1

04

P

Z0

04

P

Zz−1

08

P

T/
t

Figure 1: NORX v2.0 mode: the padded bit-strings of 12w-bit blocks A = A0|| · · · ||Aa−1,
M = M0|| · · · ||Mm−1 and Z = Z0|| · · · ||Zz−1 are processed by the monkeyDuplex sponge
construction.

The permutation P. The permutation P consists of l consecutive applications of a round
function F, i.e. P = Fl. The function F in turns consists of two layers of a smaller
permutation denoted G, which acts on 4w bits. The permutation G is first computed
in parallel on the four columns of S, then on its four diagonals, as depicted in Figure 2
and Figure 3. The pseudo-codes for both functions F and G are given in Algorithm 1
and Algorithm 2, respectively.
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Algorithm 1 – Compute F(S)

Input: Internal state (s0, . . . , s15)
Output: Updated (s0, . . . , s15)
1: (s0, s4, s8, s12)← G(s0, s4, s8, s12)
2: (s1, s5, s9, s13)← G(s1, s5, s9, s13)
3: (s2, s6, s10, s14)← G(s2, s6, s10, s14)
4: (s3, s7, s11, s15)← G(s3, s7, s11, s15)
5: (s0, s5, s10, s15)← G(s0, s5, s10, s15)
6: (s1, s6, s11, s12)← G(s1, s6, s11, s12)
7: (s2, s7, s8, s13)← G(s2, s7, s8, s13)
8: (s3, s4, s9, s14)← G(s3, s4, s9, s14)
9: return S

Algorithm 2 – Compute G(a, b, c, d)

Input: 4w-bit tuple (a, b, c, d)
Output: Updated (a, b, c, d)
1: a← H(a, b)
2: d← (a⊕ d) ≫ r0
3: c← H(c, d)
4: b← (c⊕ b) ≫ r1

5: a← H(a, b)
6: d← (a⊕ d) ≫ r2
7: c← H(c, d)
8: b← (c⊕ b) ≫ r3

9: return (a, b, c, d)

Internally, the G function uses linear rotations of words and a non-linear operation,
denoted by H, that mimics the modular addition modulo 2w of bit-strings x and y:

H(x, y) = (x⊕ y)⊕ ((x ∧ y)� 1).

The rotation constants r0, r1, r2 and r3 used in G depend on the word size (see Table 1).

Table 1: Rotation constants in the permutation G.

Instance r0 r1 r2 r3

NORX-32 8 11 16 31
NORX-64 8 19 40 63

2.2 Security Claims
First of all, the designers of NORX claim no security in the event where nonces are reused:
a key/nonce pair should be used only once for encryption. Similarly, there is no guarantee
of security under the release of unverified plaintext [ABL+14]. Namely, if during the
decryption of a ciphertext, any information on the plaintext leaks before the tag has been
successfully verified, the security can no longer be ensured.

In other cases, the designers of NORX claim security levels for both confidentiality and
authenticity that are equivalent to an exhaustive search of the key, which corresponds to a
level of security of 128 bits for NORX-32 and 256 bits for NORX-64.
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Additionally, any forgery attack in which the adversary has x forgery attempts should
succeed with probability close to x · 2−t.

The designers also impose limitations on the amount of data that can be processed
with one key. In particular, the security claims are valid as long as the usage of a key K
induces fewer than 22w calls to the underlying permutation2 P.

2.3 NORX Variants
We outline here the differences between NORX v2.0 and the other members of the NORX
family, either the successive entries to the CAESAR competition, or the lightweight
variants. We also mention a parallel alternative to the serial mode of operation presented
in Subsection 2.1.

NORX v1.0. NORX v1.0 (also named NORX v1 in some submission documents) is the initial
version of NORX submitted to the CAESAR competition in March 2014. The main difference
between NORX v1.0 and NORX v2.0 relates to the capacity size, which has been reduced
from 6w bits to 4w bits. This change yields an increased rate with a direct impact on
the efficiency of the cipher, and has been justified by security proofs, e.g. [JLM14]. The
security claims are left unchanged between the two versions.

NORX v3.0. NORX v3.0 is the latest version of NORX submitted to the CAESAR competition
in September 2016. Several changes have been brought to NORX between versions 2.0 and
3.0. In previous versions, a potential state-recovery attack would enable the adversary
to forge valid tags by computing the encryption forwards, or even to recover the key by
deducing the internal state after initialization by computing backwards. In v3.0, this
is no longer possible as the key K is XORed to the capacity part of the state after the
initialization step, and after each of both applications of P during the generation of the
authentication tag. Consequently, the tag is extracted as the capacity part Sr of the state
after the last key addition.

Another modification is that NORX v3.0 uses 4w-bit nonces instead of 2w-bit nonces for
previous versions. Again, the security claims are the same as in NORX v2.0.

NORX-8 and NORX-16. These two primitives target lightweight applications and are
variants of the NORX v2.0 design, with smaller word sizes, namely w = 8 and w = 16,
respectively. To achieve decent security levels, their capacities cannot be limited to 4w
words (which would be 32 and 64 bits, respectively). Instead, their respective capacities
are increased to 88 bits and 128 bits, respectively, and their capacity parts are defined as
(s5, . . . , s15) and (s8, . . . , s15), respectively.

The respective key lengths for NORX-8 and NORX-16 are 80 and 96 bits, and the tag
length is again the same as the key length, which define the security levels claimed for
these two primitives.

In the case of NORX-8, the tag length exceeds the rate of the sponge construction.
Consequently, the tag cannot be extracted at once. Instead, the 40 bits of the rate part
are extracted as the first half of the tag, then an extra constant 0x08 is XORed to s15, P
updates the internal state, and the second half of the tag is extracted as the rate part of
the state.

The amount of data processed with a given key is limited to respectively 224 and 232

messages.
2Note that the NORX specifications (v2.0 and v3.0) are unclear whether the data limitation refers either

to a number of initializations or to a number of calls to the core permutation. We chose the latter as it
captures both cases.
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Parallel Mode of Operation. The NORX variants submitted to the CAESAR competition
offer a parallel mode of operation, which enables to process in parallel p > 1 blocks of
plaintext simultaneously. Basically, the state of the mode of operation is diversified into p
branches, the plaintext blocks are dispatched over the branches for processing, the branches
are combined, and the trailer and tag are handled as in the serial mode.

3 Cryptanalysis of NORX v2.0
We give in this section the details of a ciphertext-only forgery attack on NORX v2.0 that
exists due to a combination of aggressive choices made by the designers. The attack indeed
relies on strong non-random properties of the underlying permutation P = Fl used in a
keyed-sponge mode, as well as a relatively small sponge capacity. Additionally, we show
that the forgery attack yields a plaintext-recovery attack and a key-recovery attack with
the same complexities. We begin in Subsection 3.1 by giving non-random properties of F
that extend to P, describe a simplified version of the forgery attack in Subsection 3.2 and
then the full attack in Subsection 3.3. We discuss requirements for the adversarial model
in Subsection 3.4 and give extensions of the attack in Subsection 3.5.

3.1 Non-Random Properties of F
In the specification document of NORX [AJN15b] and in another analysis paper [AJN15a],
the designers acknowledge the use of a permutation that presents non-random properties.
They argue that distinguishers on the permutation do not affect the overall monkeyDuplex
construction since domain separation constants are used at the mode level. Security proofs
have been written for the NORX mode, e.g. [JLM14], which assumes an ideal permutation
and sets aside its structural weaknesses.

In the sequel, we recall a strong distinguisher on F and later show how to leverage it to
attack the full primitive. We note that our attack does not invalidate the security proofs
of the mode, which rely on the assumption that the permutation is ideal and does not
present any distinguisher like the one we describe.

Previous Work. First, in [AJN15b], the designers use the constraint solver STP to
confidently assume that the permutations used in all NORX variants present only a single
fixed-point, namely the all-zero state: {x,F(x) = x} = {0}. Later in [AJN15a], the same
authors introduce a class of 24w weak states of the form

a a a a
b b b b
c c c c
d d d d

 , (a, b, c, d) ∈ GF(2w),

where all the four columns of the state are equal. Due to the column/diagonal applications
of G in the permutation F (see Section 2), it is easy to see that the set of these weak states
is stable by F: starting from a weak state, applying F any number of times leads to a weak
state. In particular, the set of weak states is stable by P = Fl.

A Stronger Distinguisher. We note here that there exists a larger class of 28w states
behaving in a similar way, where the two left columns equal the two right ones; namely,
states of the form: 

a e a e
b f b f
c g c g
d h d h

 , (a, b, c, d, e, f, g, h) ∈ GF(2w).



164 Cryptanalysis of NORX v2.0

Again, this larger class is stable by F and P.
Additionally, we note that one can slightly generalize the notion by considering “rotated”

variants of one state. More formally, we denote by S≪i the state S where the columns
are left-rotated by i positions. Given xi ∈ GF(2w), 0 ≤ i < 16, consider the state

S =


x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

 ,
and the three states obtained by rotating the columns of S by one, two and three positions:

S≪1 =


x1 x2 x3 x0
x5 x6 x7 x4
x9 x10 x11 x8
x13 x14 x15 x12

 , S≪2 =


x2 x3 x0 x1
x6 x7 x4 x5
x10 x11 x8 x9
x14 x15 x12 x13

 , S≪3 =


x3 x0 x1 x2
x7 x4 x5 x6
x11 x8 x9 x10
x15 x12 x13 x14

 .
Our main observation is that F and the column rotations commute, that is:

∀i ∈ {1, 2, 3}, F(S≪i) = F(S)≪i.

We define by symmetric a state S that is invariant by rotation by two positions: S = S≪2.
Similarly, we say that the capacity part of an internal state is symmetric if this internal
state restricted to that part is invariant by rotation by two positions.

In the following section, we show how the small proportion of the internal state
allocated to the capacity in both NORX-32 v2.0 and NORX-64 v2.0 allows to use this
structural distinguisher to mount a ciphertext-only forgery attack on these two primitives.

3.2 Ciphertext-Only Forgery of NORX v2.0 Without Padding
Recall that the security of NORX-w relies on a capacity of 4w bits, and its key and tag
sizes are of the same size 4w bits.

We now consider a modified version of NORX, in which the plaintext (and therefore
ciphertext) lengths are always a multiple of the block size 12w. Therefore, no padding
needs to be added to the plaintext before encryption. This modification enables us to
describe a simplified version of our attack, which can be adapted to the full NORX v2.0 as
shown in Section 3.3.

The following describes a ciphertext-only forgery attack against NORX v2.0 without
padding, that requires q valid ciphertext/tag pairs (C, T ), performs q forgery attempts,
and has success probability

1−
(

1− 1
22w

)q

.

In particular, the forgery attacks succeeds with probability 1 − 1/e ≈ 63% for q = 22w,
and with probability about q · 2−2w for smaller values of q. We require that there is no
trailer, that the plaintexts and ciphertexts lengths are multiples of the block size, and that
the cipher does not apply any padding. Without loss of generality, we assume there is
no header and that the plaintext and ciphertext length is exactly one block. If it is not
the case, the attack applies directly be applying ciphertext modifications only on the last
block.

Assume that an attacker has q known tuples (N i, Ci, T i) in its possession, resulting
from the NORX-w encryption of unknown messages M i, under known pairwise distinct
nonces Ni and unknown key K:

(N i, Ci, T i) = Enc(K,N i,M i).
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Figure 5: Forgery second step: attempt
forgery with rotated ciphertext and tag.

Given such a tuple, (N,C, T ), the attacker attempts to produce a forgery by considering
the message (N,C≪2, T≪2). The ciphertext and tag parts of the message are rotated
variants of the initial ciphertext and tag. In the event that the capacity part of the state
is symmetric before the last two calls to P for the generation of the tag (see Figure 4), the
states S∗ and S′∗ at the same point of the computation are rotated versions of each other,
and due to the fact that P and the rotation commute, this is also satisfied by the tags.
More formally, we have the internal state S′∗ as

S′∗ = C≪2
0 || Sc

∗,

= C≪2
0 || (Sc

∗)
≪2

,

= (C0 || Sc
∗)

≪2
.

and evaluate the two last applications of P, which gives

P2(S′∗) = P2
(

(C0 || Sc
∗)

≪2
)
,

=
(
P2 (C0 || Sc

∗)
)≪2

,

and then yield the equality on the authentication tags

T ′∗ = T≪2
∗ .

The probability for a tuple to yield an internal state such that its capacity is symmetric
before the last two calls to P for the generation of the tag (see Figure 4) is 2−2w.

All in all, as an attacker has a probability of 2−2w to forge a valid message due to the
symmetries in P, he only needs about 22w known ciphertext/tag pairs to launch the attack
and break the authenticity of NORX-w.

3.3 Forgery Attack Against NORX v2.0
We now adapt the attack to take into account the padding systematically applied by NORX
to any non-empty plaintext.

The difficulty introduced by the padding is that the attacker has no longer access to the
whole rate part of the state S∗: the part corresponding to the padding is not included in
the ciphertext. In order to minimize this unknown component, we consider only messages
of size 12w − 2 bits, which lead to the minimal padding length of two bits.

In order to forge a message using the commuting rotation property of P, the attacker
has to produce a ciphertext C ′ such that the state S′∗ is the rotated version of state S∗.
In addition to the constraint that the capacity part of the state remains unchanged, new
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constraints are introduced by the padding, stemming from the matching between

(S′∗)
r =

c′0 c′1 c′2 c′3
c′4 c′5 c′6 c′7
c′8 c′9 c′10 c′11 || v

 and (Sr
∗)

≪2 =

 c2 c3 c0 c1
c6 c7 c4 c5
c10 c11 || v c8 c9

 ,
with v the unknown part of Sr

∗ . Note that the 2-bit padding v only depends on C and C ′
through their length, and is thus repeated in both S∗ and S′∗. Denoting by x the last two
bits of x, the padding constraints are satisfied if we set the bits of C ′ to the corresponding
known bits of C, and additionally

c′9 = v and c9 = v.

Setting c9 = c′9, the constraints boil down to c9 = v which holds with probability 2−2.
Overall, taking the padding into account results in a decrease of the advantage of the

attacker, that can be limited to a factor 2−2 for the most favorable message length. This
attack can trivially be extended to any padding length p ≤ 2w with complexity 22w+p

instead of 22w+2.

3.4 Adversarial Model Discussion
Our attack is efficient on the padded version of NORX only if the length of the padding
appended to the plaintext leading to the ciphertext the adversary tries to modify is minimal.
Formally, if we keep the minimal padding length of two bits, this can lead to the following
two scenarios:

• In a chosen-plaintext setting, the adversary can select plaintexts of length equal to
12w− 2 (mod 12w). The success probability of each forgery attempt is then 2−2w−2.

• In a ciphertext-only setting, the attack still works as the adversary does not need to
know the value of the corresponding plaintext. However, it requires that ciphertexts
whose last block has a specific length are available. Under the hypothesis that the
length of the message follows a uniform distribution modulo 12w, the adversary can
try to modify only those ciphertexts, which introduces a factor 12w in the data
complexity.

We note that this constraint relies on the general description of NORX at the bit level,
whereas the functional requirements of the CAESAR competition acts on byte strings.
Consequently, to launch the attack in that case, ciphertexts of L bytes are required, with
L = −1 (mod 12w/8) and the advantage of the attacker becomes q · 2−2w−8. If this
requirement on L does not hold, the data complexity would increase by a factor 12w/8,
assuming again that the ciphertext byte-lengths modulo 12w/8 are uniformly distributed.

3.5 Key-Recovery Attack Against NORX v2.0
Recovering the Key. We now discuss whether it is possible to recover the encryption
key from a successful forgery attempt. Once the adversary achieves such a forgery, he
knows that with overwhelming probability, the capacity part of the state at the end of
the encryption step is symmetric. Therefore, only 22w values are possible for the capacity
part of the state at that point. As the adversary knows the value of the rate part, he can
recover the full state by an exhaustive search over these 22w values. Trying all 22w possible
symmetric values at the input of F8 allows to filter (on average) one internal state.

Let us suppose that the adversary additionally knows at that point the value of the
plaintext returned by the decryption algorithm on his successful forgery. He can then
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compute backwards up to the initialization of the state and filter the correct guess on the
4w-bit constants, which subsequently reveals the 4w-bit secret key.

We have successfully verified the forgery and key-recovery attacks on a toy version of
NORX v2.0, by taking the word size w = 8 and adopting the rotation constants of NORX-8.
The pseudo-code of the attack can be found in app:sec:pseudocode.

Adversarial Models. In a ciphertext-only setting, the adversary does not get the value
of the plaintext after the decryption and cannot perform the last step of the key-recovery
attack. It is however possible in chosen-plaintext or chosen-ciphertext settings. If the
adversary can query a decryption oracle, he gets the value of the plaintext he needs to
compute backwards and recovers the key.

If the adversary can query an encryption oracle, he can encrypt arbitrary one-block
plaintexts and try to forge valid ciphertexts by modifying the answers of the oracle. He
can then perform the key-recovery attack on the initial plaintext-ciphertext pair.

4 Application to Other Variants of NORX

In this section, we study the application of our attack to other versions or variants of NORX.
Namely, we show the following properties that we explain below.

1. NORX-8 is not harmed at all by our attack.

2. The parameters chosen in NORX v1.0 and NORX-16 makes our attack just as efficient
as generic attacks. A consequence is that increasing the key and tag sizes for these
versions would not increase their security. In particular, a surprising behavior is that
if one increases the key and tag lengths of NORX-16 to 128 bits, then the security
drops to 266.

3. NORX v3.0 has a small class of keys on which our attack is as efficient as a generic
key-recovery attack.

NORX v1.0. We recall that the main difference between NORX v1.0 and NORX v2.0 is that
in NORX v1.0, the rate part of the state consists of words (s0, . . . , s9) and the capacity part
of the state consists of words (s10, . . . , s15).

Let us consider an adversary who tries to launch our attack against NORX v1.0. Let
us suppose that the bit-length of the last block is exactly 8w. He can can only apply the
rotation on the first two rows of the state after the output of the last ciphertext block,
which are filled with the last eight ciphertext words. On the last row, the same symmetry
condition as in NORX v2.0 has to hold, which occurs with probability 2−2w.

The adversary then has to ensure that the third row of the state during its forgery
attempts can be derived by a column-wise rotation of the third row of the state during
the generation of the ciphertext he tries to modify. The third row of the state during the
encryption equals (s8, s9, s10, s11), where s8 and s9 have just been updated by XORing
the padding.

Then, during the verification of the forgery attempt, the third row contains the same
value (s8, s9, s10, s11), The symmetry relations he tries to obtain are as follows:

s8 = s10, s9 = s11,

which hold with probability 2−2w.
The overall success probability of the adversary is thus 2−4w, which is exactly the

success probability of a generic forgery attempt as the tag length is t = 4w.
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NORX v3.0. During the tag generation phase, the only difference between NORX v2.0 and
NORX v3.0 consists in XORing the key K after each application of P, as depicted on
Figure 6.
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Figure 6: NORX v3.0 serial mode.

As a consequence, the rotation property between the states during the real encryption
and the forgery attempt can only be preserved before the last application of P if the key
K = k0||k1||k2||k3 is itself symmetric; that is, if k0 = k2 and k1 = k3. In that case, our
attack still works.

These relations can be seen as defining a class of 22w weak keys on NORX v3.0. However,
the resulting attack enables an adversary to generate forgeries with data complexity 22w,
which is equivalent to the size of the weak key set. Furthermore, the forgery attack cannot
be trivially turned into a key-recovery attack against NORX v3.0. Our attack therefore has
a very limited impact on the security of NORX v3.0.

NORX-8. Recall that NORX-8 is very similar to NORX v2.0, but that the authentication
tag cannot be fully extracted at once from the rate part of the state. Instead, after the
extraction of the first 40 tag bits, a diversification constant is injected in the state, P is
computed and the last 40 tag bits are extracted from the rate part of the state.

Even if the adversary achieves the rotation property after the last ciphertext block, this
property is broken after the addition of the diversification constant, and no predictable
property holds for the second half of the tag. In that case, only the first 32 bits of the tag
(which are extracted from the first row of the state) can be predicted, leading to a forgery
with probability 232−80 = 2−48.

Furthermore, the rotation property itself only holds with probability 2−48, due to
symmetry conditions on the last three rows of the state, which contain the capacity part.
The overall success probability of our attack is therefore 2−96, making it less efficient than
a generic attack.

NORX-16. In NORX-16, the capacity part of the state covers the last two rows, i.e.
(s8, . . . s15). Therefore, the rotation property holds with probability 2−4w = 2−64. NORX-16
uses 96-bit keys and produces 96-bit tags, which are extracted as (s0, . . . , s6) after the
last application of P. If the rotation property holds, the adversary knows the target
values of (s0, . . . , s3) (by rotation of the valid tag), but he still needs to guess s4 and s5.
Taking account of the 2-bit loss due to the padding, the overall success probability of each
forgery attempt is 2−64−2×16−2 = 2−98, which is just below the generic bound for a forgery
attempt.

This shows that increasing the key and tag sizes of NORX-16 would not increase its
security, as our attack would still be valid. More surprisingly, using 128-bit tags would
enable the adversary to always forge successfully once the rotation property is verified,
leading to an attack with success probability 2−66 for each forgery attempt.
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5 Discussion About NORX Security Claims
NORX v2.0 Security Claims In [AJN15b, Section 3], the NORX designers claim that no
forgery attack with q attempts should succeed with probability significantly greater than
q · 2−4w. Our attack succeeds with probability about q · 2−2w−2, which violates this claim.

The designers also claim that no key-recovery attack should cost fewer than 24w

operations. Our attack costs 22w+2 operations on average. One could argue that the
limitation of the amount of data treated with a given key limits the success probability of
our attack. Nevertheless, contrary to attacks based on the birthday paradox, the marginal
success probability of a single forgery attempt using our attack does not drop once the key
is changed. Consequently, our attack enables the adversary to find the value of one of the
keys used with time and data complexity of about 266 operations (for w = 32), regardless
of the change frequency.

Forgeries Against NORX v3.0 for Long Messages. For both NORX v2.0 and NORX v3.0,
the security claim saying that any forgery attack with q attempts should have a success
probability of about q · 2−4w does not totally hold.

For any long ciphertext C that contains, say, 2m + 1 blocks of 12w bits, one can
modify only the first block of the ciphertext, keep the same tag value and obtain a
forgery with probability about 2m−4w. Indeed, before each application of P during the
decryption phase, the internal state during the forgery attempt collides with the internal
state during the decryption of the initial message with probability 2−c = 2−4w. Once a
collision occurs, it holds for all the subsequent steps of the decryption process, as the two
decrypted ciphertexts have common suffixes. The overall collision probability is therefore
approximately 2m×2−4w, and such a collision leads to equal tag values, making the forgery
attempt successful. We note that this technique shares some ideas with the long-message
internal collision attack on iterated MACs discussed in [PvO95, Section 3].

For NORX v2.0 and NORX v3.0, this property still holds when the nonce is modified in
the forgery attempt. For NORX v2.0, as no key is involved after the initialization phase,
one consequence of this property is that a given ciphertext of 2m blocks has the same tag
value under two different keys and nonces with probability 2m−4w.

The impact (at least on NORX v3.0) of this remark has to be mitigated by the fact
that similar properties can apply to other AEAD schemes such as AES-GCM [MV04]. It
is also covered by the security proof, which leads to bounds involving the total length of
encryption and decryption queries, and not only the number of forgery attempts.

NORX Security Proof. In [AJN15b], the designers partly derive their security analysis
from security proofs of the keyed-sponge mode of operation which can be found in [JLM14].
Namely, the distinguishing advantage of any chosen-plaintext adversary against NORX is
upper bounded by:

Pr[Privacy] ≤ 3(qp + σE)2

2b+1 +
(

8eqpσE
2b

)1/2
+ rqp

2c
+ qp + σE

2k
.

Similarly, the upper bound for the success probability of any forgery attempt is given
by:

Pr[Forgery] ≤ (qp + σE + σD)2

2b
+
(

8eqpσE
2b

)1/2
+ rqp

2c

+ qp + σE + σD
2k

+ (qp + σE + σD)σD
2c

+ qD
2t
.

In these formulae, b is the state size, c is the capacity, r is the rate, qp is the number of
calls to the internal permutation, qD is the number of forgery attempts, and σE and σD
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are the number of total computations of the internal permutations during encryption and
decryption queries, respectively.

Our attack succeeds with probability qD/22w+2, which is significantly larger than this
bound for a small number of queries (as we would have σE = σD = 4qD as we only need to
make one-block encryption and decryption queries).

We emphasize that our attack does not contradict the proof of the NORX mode of
operation, as it relies on the use of an ideal internal permutation instead of P. However,
it reveals that the proof does not apply to the instantiation of the mode chosen by the
designers, as the selected NORX permutation presents (at least) one strong structural
distinguisher.

Security Level of NORX-8. In [AJN15c], the authors do not provide an explicit link
between the above security bounds and the claimed security level of NORX-8 and NORX-16.
In particular, they only state that no more than 224 (resp. 232) initialization phases should
be performed with the same key, but they do not give any limit to the total length of
messages encrypted with a key. We can notice that if one encrypts constant 0 blocks,
NORX can be viewed as a stream cipher, and therefore the Babbage-Golić [Bab95,Gol97]
Time-Data tradeoff applies. In particular, NORX-8 has an internal state of only 128 bits.
Therefore, if one can encrypt 2m � 248 message blocks under the same key with NORX-8,
the security level drops below 80 bits since a state-recovery attack of time and memory
complexity at most 2128−m can be mounted, that can in turn easily be converted into a
key-recovery attack using backward computations.

Interpretation of the NORX Proof. Finally, we would like to raise the following problem.
In the bound derived from the proof of the NORX mode of operation, the term qpσD/2c

appears. In the case of NORX-32 for both v2.0 and v3.0, the capacity equals c = 128.
Note that σD can roughly be considered as the total length of decryption queries, and is
only limited to 264 in the specifications. In real-life applications, σD could possibly reach
between 240 and 248.

In that case, qp has to be smaller than 280 to 288 if one wants to conclude any meaningful
information from the bound. Note however that qp represents the number of calls to the
internal permutation made by the adversary. In our view, as P is an unkeyed permutation,
these calls do not involve any secret and can therefore be interpreted as offline computations.
The security of NORX as derived from the security proof then drops between 80 and 88 bits.

However, this remark is very unlikely to lead to an attack on NORX v3.0 that would
match this bound, for two reasons. First, when looking at the details of the proof, this
term captures the event that a direct call to P by the adversary collides with an application
of P during the verification of a decryption query. As the adversary does not get much
information from decryption queries, it is unlikely that he can detect such an event. Second,
the mode of operation of NORX v3.0 (with key additions after initialization and during the
tag computation) is close to the sandwich sponge construction by Naito [Nai16]. In the
same paper, this construction is proved to be indistinguishable from a PRF up to a bound
without such a term proportional to online-times-offline complexity; whereas a similar
term still appears in the best known bounds for the usual sponge construction.

6 Conclusion
In this paper, we demonstrated a ciphertext-only forgery attack against the AEAD scheme
NORX v2.0 that was selected for the third round of the CAESAR competition. It requires
266 (resp. 2130) known plaintexts and 266 (resp. 2130) forgery attempts for the 128-bit (resp.
256-bit) key, 128-bit (resp. 256-bit) tag variant of NORX. This attack can be turned into a key
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recovery if the adversary also has access to unencrypted data, i.e. in the chosen-plaintext
or chosen-ciphertext settings.

We also studied its applicability to other versions and variants of NORX, and found that
it competes with generic attacks against NORX v1 and NORX-16. Unlike a similar scheme
with an ideal permutation, these algorithms cannot be securely used with an increased key
and tag length.

Our results emphasize that security proofs of modes of operations need to be handled
carefully. First, strong structural distinguishers on an internal primitive that is modeled
as ideal should not be allowed. Second, one has to be very careful when deriving the level
of security offered by an algorithm from the bound given by a security proof. Finally, the
impact on the exact security of the cipher when an unwanted event occurs needs to be
minimized, as it is the case in NORX v3.0.
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A Ciphertext-only Forgery and Key-Recovery Attack
The pseudo-code for the forgery and key-recovery attacks are given in the following
Algorithm 3. We have implemented the attack on a toy example of NORX v2.0 derived
from the source code provided by the designers as part of the CAESAR competition. We
in particular emphasize that due to the CAESAR requirements, all the inputs are byte
strings, hence the padding cannot be restricted to less than one byte.

Algorithm 3 – Forgery and Key-Recovery Attack on NORX v2.0

Input: 22w ciphertext/tag pairs (Ci, Ti), 2w-bit nonce N = n0||n1
Output: Secret key K
1: for each ciphertext Ci = (c0, . . . , c10) and tag Ti = (t0, . . . , t3) do
2: C

′

i ← (c2, c3, c0, c1, c6, c7, c4, c5, c10, c9, c8)
3: T

′

i ← (t2, t3, t0, t1)
4: M ′ ← Dec(N,C ′

, T ′)
5: if M ′ 6= ⊥ then
6: for all words a, b do
7: S ← (c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c9, a, b, a, b)
8: S ← S ⊕M ′||0c

9: s15 ← s15 ⊕ 08
10: S ← P−1(S)
11: s15 ← s15 ⊕ 02
12: S ← P−1(S)
13: if (s0, s1, s2, s3) = (n0, n1, u2, u3) then
14: return K = (s4, s5, s6, s7)
15: end if
16: end for
17: end if
18: end for
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