Efficient Design Strategies Based on the AES Round Function

Jérémy Jean^{1,2} Ivica Nikolić²

¹ANSSI, Paris, France

²Nanyang Technological University, Singapore

FSE 2016 - March 22, 2016

NANYANG TECHNOLOGICAL UNIVERSITY

Introduction	Strategies	Designs	Conclusion
Introduction: Motiva	tions		

- **Plenty** of primitives based on the AES round function.
- **Several** provide good efficiency on modern processors with AES support.
- **Only a few are very efficient (e.g.**, AEGIS, Tiaoxin):
 - Rely on parallel execution.
 - Have low number of AES round calls per message.

How far can we go?

Goal	
	Provide design strategy based on the AES round function
	that is secure and extremely efficient (0.1-0.3 cycles/byte).

Introduction	Strategies	Designs	Conclusion
0000	000000	0000000	
Introduction: 9	Summary of Results		

Final result

We show design strategy that achieves our goals.

- Design strategy can be used for hash functions, AE, or MAC.
- ► Designs extremely efficient on AES-NI supported platforms.
 - We benchmark our recent platforms, including Intel Skylake.
 - Fastest design: 0.125 cycles/Bytes.
 - Smallest design: 0.188 cycles/Bytes.
- Other platforms: good efficiency as well, since only 2-3 rounds of AES.

Introduction	Strategies	Designs	Conclusion
○○●○○	0000000	0000000	o
AES Instruction Set ((AES-NI)		

Proposed by Intel in 2008.

Provides processors instructions performing AES operations.

- AESENC: One round of AES round function
- AESDEC: One round of AES inverse round function.
- ▶ AESENCLAST: Last round of AES encryption.
- ► AESDECLAST: Last round of AES decryption.
- ► AESKEYGENASSIST: AES key schedule.
- AESIMC: Apply the inverse MC operation.

$\operatorname{aesenc}(X, K) = (\mathsf{MC} \circ \mathsf{SR} \circ \mathsf{SB})(X) \oplus \mathsf{K}$

Introduction	Strategies	Designs	Conclusion
00000			
Latency and	Throughput of Instruc	tions	

Informal Definitions

- ► Latency: number of clock cycles required to execute an instruction.
- Throughput: number of clock cycles required to wait before executing the same instruction.

	Processor	Date	Latency	Throughput
	Sandy Bridge	Q1 2011	8	1
*pridge	Ivy Bridge	Q2 2012	8	1
	Haswell	Q2 2013	7	1
*well	Broadwell	Q1 2015	7	1
*lake	Skylake	Q3 2015	4	1
aesenc efficiency.				

Introduction	Strategies	Designs	Conclusion
00000			
Our Goals			

Main Goal

We want building blocks based on <u>aesenc</u> that achieve very high performances, and possibly *optimally efficient*.

Precisions:

- We want a single primitive, not a mode using a primitive.
- Its (possibly large) internal state consists of several 128-bit words.
- It includes an internal state updated by one (or more) input block.

We investigate two concurrent approaches:

- Low number of aesenc calls per input block,
- Parallelization of the aesenc calls.

Internal state: s state words.

- Overall right shift with possible application of A (aesenc).
- Possible feed-forward XOR of previous value.
- Inputs B_i can be any linear combination of $0, M_1, M_2, \ldots$

 D_{i+1}

Tiaoxin-346

 B_{i+1}

 C_{i+1}

 E_{i+1}

 F_{i+1}

 G_{i+1}

 H_{i+1}

Both designs inject two 128-bit inputs in the state.

Introduction	Strategies	Designs	Conclusion
00000	○○●○○○○	0000000	0
First Approach: Low	Number of AES Rou	ınds	

Definition: Rate

We define the rate ρ of a design as the number of calls to $\tt aesenc$ used to process a 16-byte input.

Primitive	State Size	#Inputs	Rate
AES-128	1	1	10
AES-256	1	1	14
AEGIS-128L	8	2	4
Tiaoxin-346	13	2	3

We want to achieve rates as low as possible.

Parallelization of aesenc instructions may allow significant efficiency improvements.

Example: AES-CBC on Haswell (aesenc latency: 7).

 \implies Efficiency: 70 cycles per 16 bytes = 70/16 = 4.375 cpb.

0		7 1	4	63	70
-			1		-
2	aesenc	aesenc		aesenc	
-					-

Example: AES-CTR on Haswell (aesenc latency: 7, throughput: 1). \implies Efficiency: 70 cycles per 7 × 16 bytes = 70/(7 × 16) = 0.625 cpb.

FSE 2016 - Jérémy Jean, Ivica Nikolić - Efficient Design Strategies Based on the AES Round Function

Introduction	Strategies	Designs	Conclusion
00000	○○○○●○○	0000000	o
On Efficiency Optima	ality		

- Full parallelization can only be achieved if the state is large enough:
 - ► AES-CBC: single 128-bit word, but no parallelization
 - ▶ AES-CTR: arbitrary number of 128-bit words, and full parallelization.
- Consequently, if we use *n* calls to aesenc, the primitive must have at least *n* words in the internal state.
- ► The optimal number of calls depends on the latency/throughput ratio.
 - Consider for instance a rate-4 design on Haswell (ratio: 7/1).
 - Cycles 4, 5, 6 are wasted: no call to aesenc possible \rightarrow effective speed: 7/16 cpb.
 - On Skylake (ratio: 4/1), then no empty cycle \rightarrow effective speed: 4/16 cpb is optimal.

Introduction	Strategies	Designs	Conclusion
00000	00000●0	0000000	O
Summary of Design	Choices		

Design strategies followed to achieve high efficiency:

- Low rate.
- ► At least as many 128-bit state words as aesenc calls.
- Independent calls to aesenc.
 - Allows parallel execution.

Introduction 00000	Strategies 000000●	Designs 00000000	Conclusion
Security			

Security notions

- We provide building blocks, not fully defined instantiations.
- Security claims reduced to resistance to internal collisions.
 - Capture many possible applications (MAC, Hashing, AE).
 - Well-understood problem.

Security evaluation

- ► Find diff. char. $0 \rightarrow \Delta_1 \rightarrow \ldots \rightarrow \Delta_s \rightarrow 0$ with maximal probability *p*.
 - Differences introduced in the input blocks.
- ► Task easier for designs based on the AES round function.
 - Count the number N_b of active Sboxes in the characteristic.
 - $N_b \ge 22 \Longrightarrow p \le 2^{-128}.$
 - Classical example: 4-round AES (SK): N_b ≥ 25 ⇒ p ≤ 2^{-6·25} ≪ 2⁻¹²⁸.
 - We target a minimum of 22 active Sboxes.

Introduction	Strategies	Designs	Conclusion
		0000000	
Design Strategies:	Two Classes		

We now present our two main design strategies, only using the AES round function A and the XOR operation \oplus .

Simple class

- Class $\mathcal{A}^r_{\oplus}(r>1)$.
- Uses r cascaded iterations of the AES round function.
- Equivalent to single-key model.
- Direct lower bounds from the wide-trail strategy.

General class

- Class $\mathcal{A}_{\oplus}(r=1)$.
- Allows intermediate XORs between consecutive AES rounds.
- Equivalent to related-key model.
- ► Security analysis more complex ⇒ we rely on MILP.

FSE 2016 - Jérémy Jean, Ivica Nikolić - Efficient Design Strategies Based on the AES Round Function

Introduction	Strategies	Designs	Conclusion
		000000	
Simple Class: Limited	Optimal Efficiency		

Theorem

The rate ρ of a secure design in \mathcal{A}^{r}_{\oplus} cannot be less than $r: \rho(\mathcal{A}^{r}_{\oplus}) \geq r$.

Proof intuition: Enough freedom to introduce differences and cancel them *before* they enter $A^r \Rightarrow 0 \rightarrow 0$ characteristic with 0 active Sboxes.

Introduction 00000	Strategies 0000000	Designs ○0●○○○○○	Conclusion o
Simple Class: I	Results		
Results for \mathcal{A}^{r}_{\oplus} ,	r > 1		

- Complete search of \mathcal{A}^3_{\oplus} :
 - From theorem: smallest rate achievable is 3.
 - We consider at most 12 state words
 - Need to prove that a difference enters (at least) three times the cascaded AES.
 - Indeed, $N_b \ge 9 \Rightarrow 3 \times 9 = 27 \ge 22$.
 - No schemes are secure.

▶ Partial search of \mathcal{A}^2_\oplus

- Space too large: exhaustive search impossible.
- There exists secure designs: smallest rate we achieve is 2.66.
- Figure below: secure design from \mathcal{A}^2_{\oplus} , with rate $\rho = 8/3$ and 25+ active Sboxes.

Introduction	Strategies	Designs	Conclusion
		0000000	
General Case: Findin	g Designs		

We consider the more general class to find more efficient designs.

General method

- Search space with several dimensions:
 - Rate: ρ.
 - Number of aesenc: a.
 - State size: s.
 - Number of 128-bit input blocks: *m*.
- We successively look at:

► 2 < ρ < 3.</p>

•
$$\rho = 2$$
.

• Then, for each rate, we try to minimize the state size *s*.

Introduction 00000	Strategies 0000000	Designs ○○○○●○○○	Conclusion 0
General Case:	Results with $\rho = 3$ (s	5 ≤ 5)	
Preliminary res	sults for $ ho=3$		
NAin in al			

- Minimal state size: s = 3.
 - Input space can be completely exhausted.
 - No secure design exist.

• For state sizes s = 4 and s = 5.

- There exists secure designs (24+ and 26+ active Sboxes).
- However: not optimal designs.
- Indeed: $a = 3 \Rightarrow$ empty cycles on all current processors.

Introduction	Strategies	Designs	Conclusion
General Case: R	esults with $a = 3$ (s > 6	

		ho = 3			
	-	<i>s</i> = 6	<i>s</i> = 7	<i>s</i> = 8	<i>s</i> = 9
	а	6	6	6	9
Details	т	2	2	2	3
Detuns	X	0	3	4	0
	#SB	22	25	34	25
Performances (cpb)	*bridge	0.250	0.250	0.250	0.222
	*well	0.219	0.219	0.219	0.188
	Skylake	0.188	0.188	0.188	0.188

Introduction	Strategies	Designs	Conclusion
		0000000	
General Case:	Results with $\rho = 3$ (s > 6)	

		ho = 3			
	-	<i>s</i> = 6	<i>s</i> = 7	<i>s</i> = 8	<i>s</i> = 9
Details	a m X	6 2 0	6 2 3	6 2 4	9 3 0
	#SB	22	25	34	25
Performances (cpb)	*bridge *well Skylake	0.250 0.219 0.188	0.250 0.219 0.188	0.250 0.219 0.188	0.222 0.188 0.188

Introduction	Strategies	Designs	Conclusion
		00000000	
General Case:	Results with $\rho = 3$ ($s \geq 6$	

		ho = 3			
	-	<i>s</i> = 6	<i>s</i> = 7	<i>s</i> = 8	<i>s</i> = 9
Details	a m x #SB	6 2 0 22	6 2 3 25	6 2 4 34	9 3 0 25
Performances (cpb)	*bridge *well Skylake	0.250 0.219 0.188	0.250 0.219 0.188	0.250 0.219 0.188	0.222 0.188 0.188

Introduction	Strategies	Designs	Conclusion
00000	0000000	000000000	
General Case:	Results with $\rho = 3$ (s > 6	

		ho = 3			
	-	<i>s</i> = 6	<i>s</i> = 7	<i>s</i> = 8	<i>s</i> = 9
Details	a m x #SB	6 2 0 22	6 2 3 25	6 2 4 34	9 3 0 25
Performances (cpb)	*bridge *well Skylake	0.250 0.219 0.188	0.250 0.219 0.188	0.250 0.219 0.188	0.222 0.188 0.188

Introduction 00000		Strategies 0000000	Desig 0000	ns ⊃O●O	Conclusion 0
General Ca	ase: Results	with $2 < \rho$	< 3		
			ho =	2.5	
			<i>s</i> = 7	<i>s</i> = 8	
		а	5	5	
	Datalla	т	2	2	
	Decalls	x	4	5	

22

0.250

0.219

0.188

23

0.250

0.219

0.188

#SB

Performances

(cpb)

*bridge

Skylake

*well

Introduction 00000	S c	trategies	Desig	;ns ○○○●○	Conclusion 0
General Ca	se: Results	with 2 < $ ho$ <	< 3		
			ho =	2.5	
			<i>s</i> = 7	<i>s</i> = 8	
		а	5	5	
	Detaile	т	2	2	
	Details	X	4	5	
		#SB	22	23	

FSE 2016 - Jérémy Jean, Ivica Nikolić - Efficient Design Strategies Based on the AES Round Function

x: number of XOR not included in aesenc.

0.250

0.219

0.188

0.250

0.219

0.188

*bridge

Skylake

*well

Performances

(cpb)

 A_i B_i C_i D_i E_i F_i G_i H_i Α Α A A A $M_1 \rightarrow \bigoplus$ $M_1 \rightarrow \bigoplus$ $M_1 \rightarrow \bigoplus$ $M_1 \rightarrow \bigoplus$ $M_2 \rightarrow \bigoplus$ $M_2 \rightarrow \bigoplus$ $M_2 \rightarrow \bigoplus$ $M_2 \rightarrow \bigoplus$ A_{i+1} B_{i+1} C_{i+1} E_{i+1} F_{i+1} H_{i+1} D_{i+1} G_{i+1}

Introduction 00000	Strategies 0000000		Designs 0000000●	Conclusion O
General Case: I	Results with $ ho$ =	= 2		
			ho=2	
			s = 12	
		а	6	
	Details	m	3	
		x #SB	28	
	Performances	*bridge	0.190	
	(cpb)	*well	0.136	
	x: number of XC	Skylake OR not include	0.125 d in aesenc.	
	C_i D_i E_i A A		H_i I_i	

 $M_2 \bigoplus$

 F_i

 $M_3 \bigoplus$

 G_i

 $M_3 \bigoplus$

 H_i

 $M_3 \bigoplus$

 $M_1 \bigoplus$

 J_{i+1}

 $M_2 \bigoplus$

 K_i

 $M_3 \bigoplus$

21/22

 $M_2 \bigoplus$

 D_i

 $M_1 \bigoplus$

 C_{i+1}

 $M_1 \bigoplus$

 B_i

 $M_1 \bigoplus$

 $M_2 \bigoplus$

 E_{i+}

Introduction	Strategies	Designs	Conclusion
00000	0000000	00000000	•
Conclusions			

Summary:

- ▶ New building blocks based on the AES round function.
 - Extremely efficient using AES-NI instructions.
 - Still efficient on older platforms (only 2-3 rounds of AES).
- Several designs with different sizes and security margins:
 - **Smallest**: state of $6 \times 128 = 768$ bits at 0.188 c/B on Skylake.
 - **Fastest**: state of $12 \times 128 = 1536$ bits at 0.125 c/B on Skylake.

Open problem:

Are rates smaller than 2 achievable?

22/22

Introduction	Strategies	Designs	Conclusion
00000	0000000	00000000	•
Conclusions			

Summary:

- ▶ New building blocks based on the AES round function.
 - Extremely efficient using AES-NI instructions.
 - Still efficient on older platforms (only 2-3 rounds of AES).
- Several designs with different sizes and security margins:
 - **Smallest**: state of $6 \times 128 = 768$ bits at 0.188 c/B on Skylake.
 - **Fastest**: state of $12 \times 128 = 1536$ bits at 0.125 c/B on Skylake.

Open problem:

Are rates smaller than 2 achievable?

Thank you!